www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - diagonalisierbare matrix
diagonalisierbare matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diagonalisierbare matrix: zu wenig eigenwerte
Status: (Frage) beantwortet Status 
Datum: 18:29 Do 04.05.2006
Autor: thw

Aufgabe
zeigen sie das A diagonalisierbar ist: (über IR)

1   0   0   0
0   2   0   0
0  -3   4  -3
0  -3   2  -1


also es heißt ja, das wenn A diagonalisierbar ist, das charakteristische polynom n nulstellen hat.
d.h. in einem vektorraum der dimension n, natürlich.
ich hab die nullstellen 1 und 2 aber jeweils doppelt.
theoretisch sind das doch nur 2 nulstellen und nicht 4, oder?

ich vermute aber das es 4 eigenvektoren gibt, wie berechne ich den die "anderen" zwei?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
diagonalisierbare matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Do 04.05.2006
Autor: Franzie

Hallöchen!
Also im Prinzip sind ja die Eigenwerte deiner Matrix genau die Nullstellen des charakteristischen Polynoms, also in deinem Falle die Werte, die du bereits ausgerechnet hast. Beide haben jeweils die algebraische Vielfachheit 2,würden also in der Diagonlamatrix D jeweils doppelt vorkommen, damit hast du im Prinzip schon alle deine Eigenwerte bestimmt.

liebe Grüße
Franzie

Bezug
                
Bezug
diagonalisierbare matrix: trotzdem
Status: (Frage) beantwortet Status 
Datum: 22:58 Do 04.05.2006
Autor: thw

ja ich hab dann vier eigenwerte wobei je 2 gleich sind, aber es sind ja deswegen trotzdem nur 2 nullstellen.
als ist n=nullstellen=2 kleiner als n=dimension von V=4.
also die algebraische vielfachheit ist ja 4 aber eigentlich gibt es nur zwei nullstellen..
aber noch viel wichtiger ist wie berechne ich im endeffekt vier eigenvektoren aus nur zwei eigenwerten?

was ist denn die geometrische vielfachheit?
ist das einfach die dimension des vektorraums, oder spielen die eigenwerte da eine rolle?

Bezug
                        
Bezug
diagonalisierbare matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Do 04.05.2006
Autor: madde_dong

Hallo thw,

wenn du zwei Eigenwerte hast, die je zwei mal vorkaommen dann zählt das trotzdem (mit Vielfachheiten gezählt) als 4 Eigenwerte, die halt nur nicht paarweise verschieden sind, denn sonst wärst du ja auch schon fertig.
Da deine algebraischen Vielfachheiten 2 sind, musst du die Eigenräume betimmen. Deren Dimension sind die geometrischen Vielfachheiten. Wenn die je mit den algebraischen übereinstimmen, ist die Matrix diagonalisierbar.
Wie berechnet man nun diese Eigenräume, wirst du dich fragen. Ganz einfach: die Eigenräume werden von den Eigenvektoren aufgespannt. Da du nur zeigen sollst, dass A diagonalisierbar ist, musst du nicht einmal die Eigenvektoren ausrechnen. Der Eigenraum zum Eigenwert [mm] \lambda [/mm] ist nämlich [mm] ker(A-\lambda [/mm] E) und dafür musst du nur den Rangdefekt (also [mm] n-Rang(A-\lambda [/mm] E)) berechnen. Das ist dann die geometrische Vielfachheit zum Eigenwert [mm] \lambda. [/mm]

Bezug
        
Bezug
diagonalisierbare matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Do 04.05.2006
Autor: madde_dong

Ich hoffe, ich konnte dir weiter helfen!

Bezug
                
Bezug
diagonalisierbare matrix: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Fr 05.05.2006
Autor: thw

ja klasse!!! vielen dank nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]