www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - determinantenform
determinantenform < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

determinantenform: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 20:39 Sa 10.12.2005
Autor: bobby

Hallo!

Ich soll zeigen, dass [mm] det(A)=\bruch{\Delta(Ae_{1},...,Ae_{n})}{\Delta(e_{1},...,e_{n})} [/mm] wobei [mm] B={e_{1},...,e_{n}} [/mm] Standardbasis von Vektorraum V ist und A eine [mm] n\timesn [/mm] Matrix und [mm] \Delta [/mm] eine beliebige Determinantenform.

Ich hab mir dazu schon folgendes überlegt, aber ich glaube ich habe da vielleicht irgendwas wichtiges übersprungen oder einen kleinen Denkfehler drin, vielleicht kann ja mal jemand drüber schauen:

[mm] det(a)=\summe_{\pi\inS_{n}}^{ }(sgn\pi)(\produkt_{j=1}^{n}a_{\pi(j)j}=\summe_{\pi\inS_{n}}^{ }(sgn\pi)a_{\pi(1)1}*...*a_{\pi(n)n} [/mm]
[mm] =\summe_{\pi\inS_{n}}^{ }(sgn\pi)Ae_{1}*...*Ae_{n} [/mm]
[mm] =\Delta(Ae_{1},...,Ae_{n})*\Delta(e_{1},...,e_{n})^{-1} [/mm]

        
Bezug
determinantenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mo 12.12.2005
Autor: mathiash

Hallo bobby,

vermutlich wurde eine determinantenform definiert als eine multilineare alternierende
Abbildung von [mm] V^n [/mm] nach K, und gezeigt werden soll, dass diese dann bis auf den
Vorfaktor [mm] \Delta (e_1,..,e_n) [/mm] gleich der Determinante ist . Du koenntest Dir zB den Beweis
der Determinanten-Summenformel [mm] \det [/mm] (A) [mm] =\sum_{\pi} [/mm] .... genau anschauen ( aus den Eigenschaften Multilinearitaet, Alternieren und det [mm] (e_1,..,e_n)=1) [/mm] und - fuer eine allg.
Determinantenform diesen Beweis analog ohne Verwendung der letzten Determinanteneigenschaft (Normiertheit) anwenden.

Gruss,

Mathias

Bezug
        
Bezug
determinantenform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:18 Di 13.12.2005
Autor: matux

Hallo bobby!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]