www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - determinanten
determinanten < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

determinanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:57 Sa 20.05.2006
Autor: ginababy

Aufgabe
(a+1)x-                     y=1
         x+          (a-1) y=0

also ich habe die erst mal ausgeklammert
da kam raus

ax+ x- y= 1
ay+x- y =0

jetzt weiss ich nicht mehr weiter, also ich hab dann versucht oben *y zu nehmen und unten * x und wollte erst die axy rauskuerzen aber ich merke dadurch wird die Gleichung nicht leichter weil ich dann [mm] x^2 [/mm] etc rausbekommen habe...kann mir bitte jemand weiterhelfen :-/ danke  

        
Bezug
determinanten: Lösungsansatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:09 Sa 20.05.2006
Autor: krisu112

Hallo,
du solltest vor allem nicht die Klammer hinter y ausmultiplzieren, sondern nimm den oberen Term deiner Aufgabenstellung einfach mal (-a+1) und addiere die beiden Gleichungssytseme, so kommst du dann auf x!

> (a+1)x-                     y=1  |*(-a+1)
>           x+          (a-1) y=0

Noch Fragen? Frag einfach

mfg Krisu112

Bezug
        
Bezug
determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 20.05.2006
Autor: mathmetzsch

Hallo Ihr beiden,

also krisus Idee ist richtig. Multipliziere mit (-a+1) und man bekommt

[mm] (1-a^{2})x-(-a+1)y=(-a+1) [/mm]
[mm](x+(a-1)y=0[/mm]

addiere beide

[mm] x+(1-a^{2})x=-a+1 [/mm]

Stelle nach x um (In einem ersten Schritt wird x ausgeklammert):

[mm] x=\bruch{-a+1}{2-a^{2}} [/mm]

In eine der beiden oberen einsetzen und man erhält y. Bitte aber Vorsicht mit den Begriffen. Das Ganze ist Gleichungssystem und zusammen sind es zwei Gleichungen und kein Term! Nicht durcheinander bringen!

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]