www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - det(<u_i, v_j>) Formel
det(<u_i, v_j>) Formel < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det(<u_i, v_j>) Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Mo 17.05.2010
Autor: steppenhahn

Aufgabe
Es sei [mm] $(\IR^{n},<.,.>)$ [/mm] der n-dimensionale euklidische Standardraum mit Standardskalarprodukt. Weiter sei [mm] $\psi:=\Psi_{(e_{1},...,e_{n})}:\IR^{n}\to(\IR^{n})^{\*}, e_{1}\mapsto e_{1}^{\*}$. [/mm] Für [mm] u_{1},...,e_{n-1}\in\IR^{n} [/mm] definiere die Linearform [mm] $\psi:\IR^{n}\to\IR, v\mapsto \det(v,u_{1},...,u_{n-1})$ [/mm] und so:

[mm] $\kappa:(\IR^{n})^{n-1} \to \IR^{n}: (u_{1},...,u_{n-1})\mapsto \kappa(u_{1},...,u_{n-1}) [/mm] := [mm] \psi^{-1}(\phi)$. [/mm]

Zeige: Ist [mm] v_{1},...,v_{n-1}\in\IR^{n}, [/mm] so gilt:

[mm] <\kappa(u_{1},...,u_{n-1}),\kappa(v_{1},...,v_{n-1}> [/mm] = [mm] \det\pmat{ & ... & \\ ... & & ... \\ & ... & } [/mm]

Hallo!

Ich habe schon herausgefunden: [mm] $\kappa(u_{1},...,u_{n-1}) [/mm] = [mm] \vektor{\det(e_{1},u_{1},...,u_{n-1})\\...\\\det(e_{n},u_{1},...,u_{n-1})}$. [/mm]
Außerdem musste man vorher zeigen, dass [mm] \kappa [/mm] multilinear ist und das folgende Äquivalenz gilt:

[mm] $(u_{1},...,u_{n}) \mbox{ linear unabhängig} \gdw \kappa(u_{1},...,u_{n-1}) \not= [/mm] 0 [mm] \gdw Lin(\kappa(u_{1},...,u_{n})) [/mm] = [mm] Lin(u_{1},...,u_{n})^{\perp}$ [/mm]

Bei dieser Aufgabe oben hänge ich aber jetzt. Man soll wohl auch diese Äquivalenz irgendwie in den Beweis einbringen. Ich habe mir bereits folgendes überlegt: Rechte Seite:

[mm] $\det\pmat{ & ... & \\ ... & & ... \\ & ... & } [/mm] = [mm] \det\pmat{u_{1}^{T}v_{1} & ... & u_{1}^{T}v_{n-1}\\ ... & & ... \\ u_{n-1}^{T}v_{1} & ... & u_{n-1}^{T}v_{n-1}}$ [/mm]
$= [mm] \det\left[\pmat{u_{1}^{T}\\...\\u_{n-1}^{T}}*\pmat{v_{1} & ... & v_{n-1}}\right] [/mm] = [mm] \det(u_{1},...,u_{n-1})*\det(v_{1},...,v_{n-1})$. [/mm]

Linke Seite:

[mm] $<\kappa(u_{1},...,u_{n-1}),\kappa(v_{1},...,v_{n-1}> [/mm] = [mm] <\vektor{\det(e_{1},u_{1},...,u_{n-1})\\...\\\det(e_{n},u_{1},...,u_{n-1})},\vektor{\det(e_{1},v_{1},...,v_{n-1})\\...\\\det(e_{n},v_{1},...,v_{n-1})}> [/mm] = [mm] \sum_{k=1}^{n}\det(e_{k},u_{1},...,u_{n-1})*\det(e_{k},v_{1},...,v_{n-1})$. [/mm]

Jetzt könnte ich theoretisch ja irgendwie mit Laplace entwickeln - bin da aber nicht zum Ziel gekommen.
Ich glaube auch, dass es irgendwie anders gehen muss, weil ich ja bis jetzt noch nicht die Äquivalenz von oben benutzt habe.

Wie kann ich weiter vorgehen?

Vielen Dank für Eure Hilfe!
Grüße,
Stefan

        
Bezug
det(<u_i, v_j>) Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 17.05.2010
Autor: SEcki


>  Ich glaube auch, dass es irgendwie anders gehen muss, weil
> ich ja bis jetzt noch nicht die Äquivalenz von oben
> benutzt habe.

Die brqauchst du nicht imo. Du solltest ein allgemeines Verfahren anwenden: bastele "schöne" Koordinanten, sprich: vereinfache beide Seiten bzw. reduziere das Problem.

Wie macht man das hier? Beide Seiten sind linear in den [m]u_i,v_i[/m], so wie schiefsymmterisch im Vorderen wie hinteren Teil. Beide Seiten sind also 0, wenn die us oder vs linear abhängig sind. Das heißt, du musst die Gleichung  nur noch für orthogonale Vektoren überprüfen (die nicht eh linear abhängig sind), also du nimmst eine ONB für den VR an, dann sind die us und vs entweder genau die gleichen orthogonalen Vektoren [m]e_i[/m] oder sie unterscheiden sich in einem Paar, OBdA die letzten beiden Vektoren. Das sind dann simple Identitäten.

SEcki

Bezug
                
Bezug
det(<u_i, v_j>) Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Mo 17.05.2010
Autor: steppenhahn

Hallo SEcki,

danke für deine Antwort!

> Wie macht man das hier? Beide Seiten sind linear in den
> [m]u_i,v_i[/m], so wie schiefsymmterisch im Vorderen wie hinteren
> Teil. Beide Seiten sind also 0, wenn die us oder vs linear
> abhängig sind. Das heißt, du musst die Gleichung  nur
> noch für orthogonale Vektoren überprüfen

Das verstehe ich noch nicht.
Ich verstehe, dass ich die Gleichung nur noch für linear unabhängige Vektoren [mm] u_{i} [/mm] bzw. [mm] v_{i} [/mm] überprüfen muss.
Warum kann ich aber gleich annehmen, dass [mm] u_{i} [/mm] und [mm] v_{i} [/mm] sogar orthogonal sind?

> (die nicht eh
> linear abhängig sind), also du nimmst eine ONB für den VR
> an, dann sind die us und vs entweder genau die gleichen
> orthogonalen Vektoren [m]e_i[/m] oder sie unterscheiden sich in
> einem Paar, OBdA die letzten beiden Vektoren.

Wenn ich eine ONB von V annehme, wieso müssen dann die [mm] u_i [/mm] und [mm] v_{i} [/mm] dieselben Vektoren sein wie die der ONB? Es stehen doch zum Beispiel auch [mm] \vektor{1\\1}, \vektor{-1\\1} [/mm] senkrecht aufeinander, und sie stimmen nicht mit [mm] e_{1},e_{2} [/mm] überein?

Danke für die Hilfe!

Grüße,
Stefan

Bezug
                        
Bezug
det(<u_i, v_j>) Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Di 18.05.2010
Autor: SEcki


> Das verstehe ich noch nicht.
>  Ich verstehe, dass ich die Gleichung nur noch für linear
> unabhängige Vektoren [mm]u_{i}[/mm] bzw. [mm]v_{i}[/mm] überprüfen muss.
>  Warum kann ich aber gleich annehmen, dass [mm]u_{i}[/mm] und [mm]v_{i}[/mm]
> sogar orthogonal sind?

Eine ONB, da sich jeder Vektor als linear Kombi davon ausdrücken lässt - und der Asudruck ja linear in jedem Eintrag ist!

> Wenn ich eine ONB von V annehme, wieso müssen dann die [mm]u_i[/mm]
> und [mm]v_{i}[/mm] dieselben Vektoren sein wie die der ONB?

A priori nicht. A posterori ist es eine Teilmenge (es gibt n ONB-Vektoren, die us bzw. vs sind nur n-1 viele)

> Es
> stehen doch zum Beispiel auch [mm]\vektor{1\\1}, \vektor{-1\\1}[/mm]
> senkrecht aufeinander, und sie stimmen nicht mit
> [mm]e_{1},e_{2}[/mm] überein?

Ja und?

SEcki

Bezug
                                
Bezug
det(<u_i, v_j>) Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Di 18.05.2010
Autor: steppenhahn

Hallo SEcki,

danke für deine Antwort,
werde mir das mal durch den Kopf gehen lassen.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]