www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - dehnungsbeschränkte Funktionen
dehnungsbeschränkte Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dehnungsbeschränkte Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Do 15.12.2005
Autor: roxy

Aufgabe
Zeigen Sie mit Hilfe von Intervallschachtelungen den Zwischenwertsatz
für dehnungsbeschränkte Funktionen:
Sei f : [a, b] → [mm] \IR [/mm] dehnungsbeschränkt, d.h. es gibt L > 0, so dass gilt:
[mm] |f(x_{0}) [/mm] − [mm] f(x_{1})| [/mm] ≤ [mm] L|x_{0} [/mm] − [mm] x_{1}| [/mm] für alle [mm] x_{0}, x_{1} [/mm] ∈ [a, b] .
Dann gibt es zu jedem y zwischen f(a) und f(b) ein x ∈ [a, b] mit f(x) = y.

Hallo zusammen!
kann mir jemand weiterhelfen?
Danke!
roxy

        
Bezug
dehnungsbeschränkte Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 15.12.2005
Autor: mathiash

Hallo roxy,

versuchen wir es mal:  Betrachten wir den Fall f(a)< f(b), der andere Fall geht analog.
Die Bedingung sagt dann doch

[mm] f(a+\delta) \in [f(a)-L\cdot \delta,f(a)+L\cdot\delta] [/mm]  (für [mm] \delta\in [/mm] [0,b-a])  und

[mm] f(b-\delta)\in [f(b)-L\cdot \delta, f(b)\cdot +\delta] [/mm]   (für [mm] \delta\in [/mm] [0,b-a])

Wir suchen ja ein x mit f(x)=y. Die obigen Bedingungen (man kann sie sich auch gut
graphisch veranschaulichen) geben dann doch Schranken für ein solches x:

die erste liefert   [mm] x\geq a+\bruch{y-f(a)}{L}=: a_2 [/mm]  und die zweite liefert
[mm] x\leq b-\bruch{f(b)-y}{L}=: b_2. [/mm] Es ist [mm] a_2\leq b_2 [/mm] und [mm] b_2-a_2= b-a-\bruch{f(b)-f(a)}{L}. [/mm]

Wg. [mm] f(a_2)\leq y\leq f(b_2) [/mm] kann ich dann dies so iterieren, d.h. ich nehme [mm] a_2,b_2 [/mm]
als neue Werte für a,b, und die Intervallaenge konvergiert bei Iterieren geg. 0, wobei
y immer im Interval [mm] [f(a_i),f(b_i)] [/mm] ist.

Ich hoffe, das hilft Dir genügend weiter.

Viele Gruesse,

Mathias

Bezug
        
Bezug
dehnungsbeschränkte Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Fr 16.12.2005
Autor: Julius

Hallo!

Eine weitere Lösung kann man []hier nachlesen...

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]