www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - darstellende matritzen
darstellende matritzen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

darstellende matritzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Mi 01.02.2006
Autor: AriR

(frage zuvor nicht gestellt)

Hey Leute, ich glaube ich hab heute irgendwie mal wieder einen black out.

Angenommen ich habe folgende lineare Abb. [mm] f:\IR^3 \to \IR^3 [/mm]

f(x,y,z)=(x+y,y,z)

und ich möchte hierzu die darst. Matrix bzgl. der Standardbasen:

Dann kann man das ja mit der konstruktionsvorschrift machen, wobei man die basis erst abbilden muss, dann in abhängigkeit der anderen wieder aufschreiben usw.

Die Matrix ist dann die identisch zu der, die ich rausbekomme per folgender Konstruktion:

f( [mm] \vektor{x \\ y \\z})= \vektor{x+y \\ y \\z}= \vektor{1x+1y+0z \\ 0x+1y+0z \\ 0x+0y+1z}= \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm] *  [mm] \vektor{x \\ y \\z} [/mm]

nur warum ist das gleich?? hat dafür jemand eine anschauliche erklärung?

danke schonmal im voraus =) Gruß Ari ;)

        
Bezug
darstellende matritzen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Mi 01.02.2006
Autor: Franzie

Hallöchen!
Hast du schon mal was vom kanonischen Basisisomorphismus gehört?
Das ist nämlich die Antwort auf deine Frage.

liebe Grüße

Bezug
        
Bezug
darstellende matritzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Mi 01.02.2006
Autor: AriR

leider nein.. kann man das irgendwo im netz nachlesen??

Bezug
                
Bezug
darstellende matritzen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Mi 01.02.2006
Autor: Franzie

Weiß nicht genau, kannst ja mal ein bisschen surfen. Ich geb dir hier mal das, was ich in der Vorlesung dazu hatte:
Sei B=(v1,...,vn) Basis eines K-Vektorraumes und (e1,...,en) die kanonische Basis von [mm] K^{n}. [/mm] Dann gibt es (nach einem gewissen Satz über Beschreibung lineare Abbildung durch die Bilder einer Basis) einen eindeutig bestimmten Isomorphismus
phi: [mm] K^{n} \to [/mm] V  mit [mm] phi(e_{i})=v_{i} [/mm]
Dieser heißt kanonischer Basisisomorphismus und beschreibt den Zusammenhang zwischen Vektoren und ihren Koordinatenv ektoren bezüglich einer Basis B.
[mm] phi:K^{n} \to [/mm] V [mm] :\vektor{ \lambda 1\\ ... \\ \lambda n}\mapsto \lambda [/mm] 1*v1+...+lambda n*vn (wobei deine v1,...,vn die Standardbasis ist)
Und mit diesem Isomorphismus lassen sich Aussagen über Elemente von V in gleichwertige Aussagen über Elemente von [mm] K^{n} [/mm]  umwandeln und umgekehrt.

Hoffe, das hilft ein wenig. Im Beutelspacher gibt es auf jeden Fall was darüber zum Nachlesen.
liebe Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]