www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - cos²x
cos²x < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cos²x: korrektur ... hilfe
Status: (Frage) beantwortet Status 
Datum: 09:36 Sa 14.07.2007
Autor: bjoern.g

Aufgabe
[mm] \integral_{a}^{b}{cos²x dx} [/mm]

stammfkt?

[mm] \integral_{a}^{b}{cos²x dx}=\integral_{a}^{b}{cosx*cosx dx}=cosx*sinx [/mm] - [mm] \integral_{a}^{b}{sinx * -sinx dx}= [/mm] cosx*sinx + [mm] \integral_{a}^{b}{sin²x dx} [/mm]  

soweit bin ich

ich weis auch das ich sin²x durch 1-cos²x ausdrücken kann also [mm] \integral_{a}^{b}{1-cos²x dx} [/mm] aber wie gehts dann weiter an der stelle häng ich....
sorry ist sicher trivial aber habe das noch nie vorher gemacht und schreiben in 1 woche klausur und haben nur noch kurz mathe vorher wo er den stoff durchnehmen will weils prüfungsrelevant ist :(

danke!

        
Bezug
cos²x: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Sa 14.07.2007
Autor: angela.h.b.


> [mm]\integral_{a}^{b}{cos²x dx}[/mm]
>  
> stammfkt?
>  [mm]\integral_{a}^{b}{cos²x dx}=\integral_{a}^{b}{cosx*cosx dx}=cosx*sinx[/mm]
> - [mm]\integral_{a}^{b}{sinx * -sinx dx}=[/mm] cosx*sinx +
> [mm]\integral_{a}^{b}{sin²x dx}[/mm]  
>
> soweit bin ich
>
> ich weis auch das ich sin²x durch 1-cos²x ausdrücken kann
> also [mm]\integral_{a}^{b}{1-cos²x dx}[/mm] aber wie gehts dann
> weiter an der stelle häng ich....

Hallo,

Du bist doch schon prima vorwärts gekommen.

Nun folgt ein kleiner Trick, den es sich lohnt zu merken, denn man kann ihn gerade beim Integrieren von trig. Funktionen ab und zu gebrauchen.

Du hast

[mm] \integral_{a}^{b}{cos²x dx} [/mm] =cosx*sinx + [mm] \integral_{a}^{b}{sin²x dx} [/mm] =cosx*sinx + [mm] \integral_{a}^{b}(1-cos²x [/mm] )dx =cosx*sinx + [mm] \integral_{a}^{b}1dx -\integral_{a}^{b}cos²x [/mm] dx

Nun bringst Du den letzten Summanden auf die andere Seite und erhältst

[mm] 2\integral_{a}^{b}{cos²x dx}=cosx*sinx [/mm] + [mm] \integral_{a}^{b}1dx, [/mm]

womit Du fast fertig bist.

Gruß v. Angela



Bezug
                
Bezug
cos²x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:11 Sa 14.07.2007
Autor: bjoern.g

wäre dann     [mm] \bruch{sinx*cosx+x}{2} [/mm]


müsste so stimmen oder?? kann man das also generell so machen?? zumindest bei den trigfkt.

Bezug
                        
Bezug
cos²x: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Sa 14.07.2007
Autor: angela.h.b.


> wäre dann     [mm]\bruch{sinx*cosx+x}{2}[/mm]
>  

Hallo,

das sieht recht gut aus.
Wenn Du sicher sein möchtest, bilde doch die Ableitung. Es müßte cos^2x herauskommen.
(Dein Integral stimmt. Es ist aber wichtig, daß man das selbst entscheiden kann.)

> müsste so stimmen oder??

Die Stammfunktion stimmt.
Du mußt jetzt noch die Grenzen einsetzen, denn Du solltest ja ein bestimmtes Integral berechnen.


> kann man das also generell so
> machen?? zumindest bei den trigfkt.

"Generell so machen" würde ich nicht sagen. Aber wenn feststellt, daß auf der rechten Seite dasselbe Integral mit umgekehrtem Vorzeichen wie das auszurechnende vorkommt, sollte einem dieser Trick einfallen.
Bei trig. Funktionen hat man das des öfteren, aber auch sonst ist's hin und wieder nützlich. Du solltest diesen Trick im Werkzeugkoffer haben.

Gruß v. Angela


Bezug
        
Bezug
cos²x: Alternativweg
Status: (Antwort) fertig Status 
Datum: 11:24 Sa 14.07.2007
Autor: Loddar

Hallo Björn!


Auch hier kann man alternativ folgendes Additionstheorem anwenden und umformen:

[mm] $\cos(2x) [/mm] \ = \ [mm] 2*\cos^2(x)-1$ $\gdw$ $\cos^2(x) [/mm] \ = \ [mm] \bruch{\cos(2x)+1}{2} [/mm] \ = \ [mm] \bruch{1}{2}*\cos(2x)+\bruch{1}{2}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]