www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - charakteristisches Polynom
charakteristisches Polynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Unklarheit
Status: (Frage) beantwortet Status 
Datum: 23:11 Do 09.12.2010
Autor: mathe-thomas

Aufgabe
Man hat eine eine reelle 2x2-Matrix. Kann diese ein komplexes charakteristisches Polynom haben?

Hallo,

meine Frage steht oben. Mir ist klar, dass jedes Polynom aus [mm] \IR[X] [/mm] auch in [mm] \IC[X] [/mm] ist, aber kann das charakteristische Polynom einer Matrix mit reellen Einträgen auch in [mm] \IC[X] [/mm] \ [mm] \IR[X] [/mm] sein?

Danke schonmal für alle Hilfestellungen.
Gruß,
Thomas



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Do 09.12.2010
Autor: max3000

Das Polynom an sich nicht, aber dessen Lösung.
Für eine 2x2-Matrix bekommst du ein Polynom 2. Grades als charakteristische Funktion und die kann ja 2 (konjugiert) komplexe Nullstellen haben.

Oder versteh ich hier ewas falsch? Eigentlich ist doch die charakteristische Funktion immer ein Polynom mit reellen Koeffizienten.



Bezug
                
Bezug
charakteristisches Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:41 Fr 10.12.2010
Autor: mathe-thomas

ja, hätte ich auch so gesagt aber war mir nicht mehr ganz sicher ob das polynom theoretisch doch komplex sein kann...
danke für deine antwort!

Bezug
        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Fr 10.12.2010
Autor: fred97


> Man hat eine eine reelle 2x2-Matrix. Kann diese ein
> komplexes charakteristisches Polynom haben?
>  Hallo,
>  
> meine Frage steht oben. Mir ist klar, dass jedes Polynom
> aus [mm]\IR[X][/mm] auch in [mm]\IC[X][/mm] ist, aber kann das
> charakteristische Polynom einer Matrix mit reellen
> Einträgen auch in [mm]\IC[X][/mm] \ [mm]\IR[X][/mm] sein?

Die Frage kannst Du Dir doch selbst beantworten !!

Ist $A= [mm] \pmat{ a & b \\ c & d }$ [/mm]  mit a,b,c,d [mm] \in \IR, [/mm] so berechne doch mal

              [mm] $p(\lambda):=det(A- \lambda [/mm] E)$

Kann p komplexe  nicht-reelle  Koeffizienten haben ?

FRED


>  
> Danke schonmal für alle Hilfestellungen.
>  Gruß,
>  Thomas
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]