www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - char. Polynom/invariante UR
char. Polynom/invariante UR < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

char. Polynom/invariante UR: Verständnis
Status: (Frage) überfällig Status 
Datum: 14:49 Mi 06.10.2010
Autor: ilfairy

Aufgabe
[mm]F \in End(V)[/mm]
Wie sieht die Beziehung zwischen dem charakteristischen Polynom und invarianten Unterräumen aus?

Im Fischer (14. Auflage, S. 242, Kapitel 4.4) wird von der Beziehung zwischen char. Pol. und invarianten Unterräumen gesprochen. Ich bin mir nicht sicher, ob ich diese wirklich verstanden habe.
Mein Vorschlag:


eine Richtung:
char. Pol. zerfällt in Linearfaktoren, [mm]\lambda_{1}, .. , \lambda_{k}[/mm] paarweise verschiedene Eigenwerte und algebraische und geometrische Vielfachheit sind gleich, dann kann man V in F-invariante Unterräume zerlegen. Kurz:
[mm]P_{F}(t) = (\lambda_{1}-t) * (\lambda_{2}-t) * .. * (\lambda_{k}-t)[/mm]
[mm]\mu(P_{F}, \lambda) = dim(Eig(F, \lambda))[/mm]
und [mm]\lambda_{1}, .. , \lambda_{k}[/mm] paarweise verschieden
[mm]\Rightarrow [/mm]
[mm]V = Eig(F,\lambda_{1}) \oplus .. \oplus Eig(F, \lambda_{k})[/mm] mit [mm]Eig(F, \lambda_{i}) [/mm] F-invariant [mm]\forall i=1,..,k[/mm]


Aber was ist mit der anderen Richtung? Was ist, wenn ich meinen Vektorraum V in F-invariante Unterräume zerlegen kann?
Ich weiß, dass [mm]P_{U}(t)[/mm] ein Teiler von [mm]P_{F}(t)[/mm] ist (also, dass das char. Pol. von F eingeschränkt auf den invarianten Unterraum U ein Teiler vom char. Pol. von F ist)
Aber ist das alles?
Ich habe auch noch ein paar Fragen zum nachfolgenden Thema Fahnen und bin am Überlegen, ob ich mehr verstehe, wenn ich diese Fragen erstmal kläre. Was denkt ihr dazu?

Vielen Dank für eure Hilfe!



Ich habe diese Frage in keinem anderen Forum im Internet gestellt.

        
Bezug
char. Polynom/invariante UR: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Mo 11.10.2010
Autor: felixf

Moin!

> [mm]F \in End(V)[/mm]
>  Wie sieht die Beziehung zwischen dem
> charakteristischen Polynom und invarianten Unterräumen
> aus?
>  Im Fischer (14. Auflage, S. 242, Kapitel 4.4) wird von der
> Beziehung zwischen char. Pol. und invarianten Unterräumen
> gesprochen. Ich bin mir nicht sicher, ob ich diese wirklich
> verstanden habe.

Ich hab den Fischer leider nicht zur Hand und kann deswegen nicht nachschauen, was da steht.

Man kann aber etwas ganz allgemein beweisen. Dazu erstmal eine Definition. Sei $A [mm] \in K^{n \times n}$ [/mm] eine fest gewaehlte Matrix.

a) Eine universelle $A$-Zerlegung ist eine Zerlegung [mm] $\bigoplus_{i=1}^k U_i [/mm] = [mm] K^n$ [/mm] mit $A$-invarianten UVRen [mm] $U_1, \dots, U_k$ [/mm] von [mm] $K^n$, [/mm] so dass gilt: ist $U$ irgendein $A$-invarianter UVR, so ist $U = [mm] \bigoplus_{i=1}^k (U_i \cap [/mm] U)$.

Sei die Menge dieser Zerlegungen gleich [mm] $\mathcal{Z}$. [/mm]

(Beachte, dass die Inklusion [mm] "$\supseteq$" [/mm] immer glit. Die Rueckrichtung ist die wichtige Aussage!)

b) Eine teilerfremde Zerlegung des char. Polynoms [mm] $\xi_A$ [/mm] von $A$ ist ein Produkt [mm] $\xi_A [/mm] = [mm] \prod_{i=1}^k f_i$, [/mm] wobei [mm] $f_1, \dots, f_k \in [/mm] K[t]$ paarweise teilerfremd und normiert sind.

Sei die Menge dieser Zerlegungen gleich [mm] $\mathcal{F}$. [/mm]

(Ich gehe hier davon aus, dass char. Polynome immer normiert sind.)

Dann sollte man folgendes Beweisen koennen:

Es gibt eine Bijektion zwischen der Menge der universellen $A$-Zerlegungen, [mm] $\mathcal{Z}$, [/mm] und der Menge der teilerfremden Zerlegungen des char. Polynoms, [mm] $\mathcal{F}$, [/mm] die gegeben ist durch [mm] $(U_1, \dots, U_k) \mapsto (\xi_{A|_{U_1}}, \dots, \xi_{A|_{U_k}})$. [/mm]

(Hier ist [mm] $\xi_{A|_U}$ [/mm] das char. Polynom des Endomorphismus $U [mm] \to [/mm] U$, der durch den durch $A$ beschriebenen Endomorphismus [mm] $K^n \to K^n$ [/mm] induziert wird. Dies geht, da $U$ $A$-invariant ist.)


Die feinste universelle $A$-Zerlegung korrespondiert also zur Zerlegung von [mm] $\xi_A$ [/mm] in Primpolynom-Potenzen.

Nimmt man an, dass [mm] $\xi_A$ [/mm] in Linearfaktoren zerfaellt, etwa [mm] $\xi_A [/mm] = [mm] \prod_{i=1}^k [/mm] (t - [mm] \lambda_i)^{e_i}$ [/mm] mit [mm] $e_i \in \IN$ [/mm] und [mm] $\lambda_1, \dots, \lambda_k$ [/mm] paarweise verschieden, so ist eine solche Zerlegung gerade $((t - [mm] \lambda_1)^{e_1}, \dots, [/mm] (t - [mm] \lambda_k)^{e_k})$. [/mm]


Es gibt oft feinere Zerlegungen von [mm] $K^n$ [/mm] in $A$-invariante Untervektorraeume (siehe z.B. die Jordansche Normalform: jedes Jordan-Kaestchen entspricht einem $A$-invarianten UVR), diese sind jedoch nicht mehr "universell" im obigen Sinne.


>  Mein Vorschlag:
>  
>
> eine Richtung:
>  char. Pol. zerfällt in Linearfaktoren, [mm]\lambda_{1}, .. , \lambda_{k}[/mm]
> paarweise verschiedene Eigenwerte und algebraische und
> geometrische Vielfachheit sind gleich, dann kann man V in
> F-invariante Unterräume zerlegen. Kurz:
>  [mm]P_{F}(t) = (\lambda_{1}-t) * (\lambda_{2}-t) * .. * (\lambda_{k}-t)[/mm]
>  
> [mm]\mu(P_{F}, \lambda) = dim(Eig(F, \lambda))[/mm]
>  und
> [mm]\lambda_{1}, .. , \lambda_{k}[/mm] paarweise verschieden
>  [mm]\Rightarrow[/mm]
>  [mm]V = Eig(F,\lambda_{1}) \oplus .. \oplus Eig(F, \lambda_{k})[/mm]
> mit [mm]Eig(F, \lambda_{i})[/mm] F-invariant [mm]\forall i=1,..,k[/mm]
>  
>
> Aber was ist mit der anderen Richtung? Was ist, wenn ich
> meinen Vektorraum V in F-invariante Unterräume zerlegen
> kann?

Dann gibt es i.A. weder Linearfakoren des char. Polynoms, doch ist die Matrix diagonalisierbar.

>  Ich weiß, dass [mm]P_{U}(t)[/mm] ein Teiler von [mm]P_{F}(t)[/mm] ist
> (also, dass das char. Pol. von F eingeschränkt auf den
> invarianten Unterraum U ein Teiler vom char. Pol. von F
> ist)
>  Aber ist das alles?

Ich hoffe das, was ich oben geschrieben hab, bringt dich etwas weiter und verwirrt dich nicht zu sehr ;-)

LG Felix


Bezug
                
Bezug
char. Polynom/invariante UR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 18.10.2010
Autor: ilfairy

Uhh! Ein wenig verwirrt bin ich schon - hab aber eine Ahnung um was es hier geht.

Allerdings habe ich noch zwei Fragen zu a) und b):
Ich verstehe die Definition einer universellen Zerlegung nicht. Wie kann denn so eine Zerlegung aussehen?
Die Inklusion in eine Richtung ist mir klar – allerding nicht in die andre Richtung (also warum U immer Teilmenge der direkten Summe ist).

Und warum gehst du davon aus, dass das charakteristische Polynom immer normiert ist?

Liebe Grüße und vielen Dank!

Bezug
                        
Bezug
char. Polynom/invariante UR: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mo 25.10.2010
Autor: felixf

Moin!

> Uhh! Ein wenig verwirrt bin ich schon - hab aber eine
> Ahnung um was es hier geht.

Gut :)

> Allerdings habe ich noch zwei Fragen zu a) und b):
>  Ich verstehe die Definition einer universellen Zerlegung
> nicht. Wie kann denn so eine Zerlegung aussehen?

Nun, ist die lineare Abb. etwa ueber eine Matrix wie [mm] $\pmat{ \lambda & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda }$, [/mm] dann ist die Zerlegung [mm] $K^n$ [/mm] selber (also genau ein einziger invarianter UVR).

Die Zerlegung ist einfach die Hauptraumzerlegung, auch Jordanzerlegung genannt.

>  Die Inklusion in eine Richtung ist mir klar – allerding
> nicht in die andre Richtung (also warum U immer Teilmenge
> der direkten Summe ist).

Nun, das muss man ja gerade zeigen, damit es eine universelle Zerlegung ist.

Oder verstehe ich deine Frage falsch? Meinst du wie man das im konkreten Fall zeigen kann?

> Und warum gehst du davon aus, dass das charakteristische
> Polynom immer normiert ist?

Weil ich's schoener finde :)

LG Felix


Bezug
        
Bezug
char. Polynom/invariante UR: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 22.10.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]