www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - cayley hamilton
cayley hamilton < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cayley hamilton: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 16.01.2005
Autor: mayinger

Hallo,

ich lerne gerade Modellierung und numerische Beschreibung techn.
Strömungen.
Hier fällt das Stichwort Caley Hamilton Theorem. Kann mir jemand mit einfachen Worten erklären, was sich dahinter verbirgt?
Ich weis zwar, das dass die Darstellung eines Vektors durch seine Invarinaten ist.......
Aber ich kann nciht viel damit anfangen.

Please Help


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
https://matheraum.de/list?f=66

        
Bezug
cayley hamilton: Link
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 So 16.01.2005
Autor: Astrid

Hallo,

bitte stelle deine Frage immer nur in einem Forum im Matheraum.
Die meisten Mitglieder schauen normalerweise in alle Foren hinein.

Vielleicht hilft dir zum Thema Cayley Hamilton ja  dieser Thread.

Wenn du dann weitere Fragen has, poste sie einfach hier!

Viele Grüße
Astrid




Bezug
                
Bezug
cayley hamilton: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 20:09 So 16.01.2005
Autor: mayinger

Leider verstehe ich das nicht, da ich kein mathematiker bin. Studiere Maschinenbau.
Kann mir jemand die folgenden Zeilen erklären??

für jeden Tensor zweiter Stufe gilt:
$ [mm] b_{ij}^3 -Ib_{ij}^2+IIb_{ij}-IIIb_{ij}^0$ [/mm]

für die gilt:
[mm] $b_{ij}^0=\delta_{ij}$ [/mm]
[mm] $b_{ij}^2=b_{ik}b_{kj}$ [/mm]
[mm] $b_{ij}^3=b_{ik}b_{kn}b_{nj}$ [/mm]

mit
[mm] I=b_{ij} [/mm]
[mm] II=\frac{b_{ii}b_{jj}-b_{ii}^2}{2} [/mm]
[mm] III=\frac{b_{ii}b_{jj}b_{kk}-3b_{ii}b_{jj}^2+2b_{ii}^3}{3} [/mm]

ein tensor [mm] \phi_{ij}, [/mm] der eine Funktion von [mm] b_{ij} [/mm] ist
lässt sich in einer Reihe entwickeln:
[mm] \phi_{ij} [/mm] = [mm] \alpha_1b_{ij}^{0}+\alpha_2b_{ij}^{1}+\alpha_3b_{ij}^{2}+....... [/mm]

durch multiplikation der ersten Gleichung erhält man den Ausdruck:
[mm] b_{ij}^{3+n}-Ib_{ij}^{2+n}+IIb_{ij}^{1+n}-IIIb_{ij}^{n}=0 [/mm]

Durch [mm] b_{ij}^0, b_{ij}^1 [/mm] und [mm] b_{ij}^2 [/mm] können alle Ordnungen des Tensors ausgedrückt werden.
Mit der 8. und 9. Gleichung lässt sich jeder abhängige Tensor mit Kenntnis von [mm] b_{ij}^0, b_{ij}^1 [/mm] und [mm] b_{ij}^2 [/mm] als Funktion seiner Invarianten berechnen.

[mm] \phi_{ij} [/mm] = [mm] \beta_1\delta_{ij}+\beta_2b_{ij}+\beta_3b_{ij}^2 [/mm]

wobei

[mm] \beta_1,\beta_2,\beta_3= [/mm] f(I,II,III)

Bezug
                        
Bezug
cayley hamilton: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Mo 17.01.2005
Autor: Stefan

Hallo!

> Leider verstehe ich das nicht, da ich kein mathematiker
> bin.

Und leider verstehe ich das nicht, was du schreibst, weil ich Mathematiker bin. ;-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]