www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - bild
bild < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bild: matrix
Status: (Frage) beantwortet Status 
Datum: 18:26 So 20.01.2008
Autor: lisir

Aufgabe
-2 1 1
1 -2 1
1 1 -2

Was ist der BILD dieser Matrix?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

-2 1 1
1 -2 1
1 1 -2

-2 1 1
1 -2 1
0 0 -3

-2 1 1
0 -3 3
0 -3 3

-2 1 1
0 -3 3
0 0 0


Wie man sehen kann hat die Matrix den Rang 2
RangA=dimBildA=2

Die beiden oberen Spaltenvektoren sind linear unabhängig.

Angela meinte, man könnte an der Stufenform eine Basis ablesen. So genau hatte ich das nicht begriffen, wären dann
-2     1
1      -2
1       1
Eine Basis? (wenn es richtig wäre, wüsste nicht wirklich wieso ... :(

Ist das Bild einer Matrix nun das gleiche wie die Basis der Matrix (Angela hatte es versucht mir zu erklären, hab ich es richtig verstanden)


Kann mir da jemand noch mal bitte etwas helfen? Danke!


        
Bezug
bild: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 So 20.01.2008
Autor: angela.h.b.


> -2 1 1
> 1 -2 1
> 1 1 -2
>  
> Was ist der BILD dieser Matrix?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  -2 1 1
> 1 -2 1
> 1 1 -2
>  
> -2 1 1
> 1 -2 1
> 0 0 -3
>  
> -2 1 1
> 0 -3 3
>  0 -3 3
>  
> -2 1 1
> 0 -3 3
>  0 0 0
>  
>
> Wie man sehen kann hat die Matrix den Rang 2
>  RangA=dimBildA=2

Hallo,

ja, das stimmt.

>  
> Die beiden oberen Spaltenvektoren sind linear unabhängig.

Ich weiß nicht genau, wovon Du jetzt sprichst.

>
> Angela meinte, man könnte an der Stufenform eine Basis
> ablesen. So genau hatte ich das nicht begriffen, wären dann
> -2     1
> 1      -2
>  1       1
>  Eine Basis? (wenn es richtig wäre, wüsste nicht wirklich
> wieso ... :(

Ja.
Du kannst Deiner Zeilenstufenform entnehmen (letzte Spalte zuhalten), daß, hättest Du nur mit diesen beiden Vektoren gearbeitet, der Rang der Matrix auch 2 gewesen wäre.


>
> Ist das Bild einer Matrix nun das gleiche wie die Basis der
> Matrix

Eine Matrix hat keine Basis.

Vektorräume haben Basen.

Das Bild einer Matrix ist der von ihren Spalten aufgespannte Raum, die lineare Hülle, Span, erzeugte Menge.
Die beiden ermittelten Vektoren sind eine Basis dieses Raumes, die Basis von Bild A.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]