www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - bijektive abbildung
bijektive abbildung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bijektive abbildung: aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:13 Sa 27.10.2007
Autor: Pompeius

Aufgabe
J ist die Menge aller bijektiven Abbildungen k: {a,b,c,d} -> {a,b,c,d}.
Angabe der Elemente dieser Menge

Hey Leute !

könnte mir jemand vielleicht n paar hilfreiche tipps geben ?

mein ansatz :

also ich habe ja eine Id: M [mm] \to [/mm] M , x [mm] \mapsto [/mm] Id(x) = x

die anzahl aller bijektiven Abbildung wäre doch 4! oder ?

also ich bilde die elemente von M auf alle Permutationen von M ab ..

dann hätte ich ja schon mal |J| = 24 ....

falls dieser ansatz richtig sein sollte, liegt mein problem darin die elemente

von J irgendwie aufzuschreiben ..

in aufzählender oder beschreibender weise ?

wär dankbar für ein paar ansätze !

        
Bezug
bijektive abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Sa 27.10.2007
Autor: angela.h.b.


> J ist die Menge aller bijektiven Abbildungen k: {a,b,c,d}
> -> {a,b,c,d}.
>  Angabe der Elemente dieser Menge
>  Hey Leute !
>  
> könnte mir jemand vielleicht n paar hilfreiche tipps geben
> ?
>  
> mein ansatz :
>  
> also ich habe ja eine Id: M [mm]\to[/mm] M , x [mm]\mapsto[/mm] Id(x) = x
>  
> die anzahl aller bijektiven Abbildung wäre doch 4! oder ?

Hallo,

ja.

>  
> also ich bilde die elemente von M auf alle Permutationen
> von M ab ..
>  
> dann hätte ich ja schon mal |J| = 24 ....

Ja.

>  
> falls dieser ansatz richtig sein sollte, liegt mein problem
> darin die elemente
>
> von J irgendwie aufzuschreiben ..
>  
> in aufzählender oder beschreibender weise ?

Aufzählend fände ich ziemlich ermüdend, auch für den Leser.

Da Du das Wort "Permutationen "  verwendest, gehe ich davon aus, daß Permutationen bei Euch bekannt sind. Dann kannst Du doch einfach schreiben, daß die menge der Bijektionen auf M gleich der Menge der Permutationen von M ist.
So würde ich das machen.

Gruß v. Angela

Bezug
                
Bezug
bijektive abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Sa 27.10.2007
Autor: Pompeius

Aufgabe
J ist die Menge aller bijektiven Abbildungen k: {a,b,c,d} -> {a,b,c,d}.

Angabe der Elemente dieser Menge

hi nochmal !

.. also das wort "permutation" ist ja relativ bekannt, ich kenn das nämlich ohne das wir das schon hattten :-)
ich weiß deswegen nicht wie ich das in mengen-beschreibender form so aufschreiben soll ..
wenn ich einfach nur ein "paar" elemente von J aufzählen will, wie müsste ich das denn aufschreiben ?

k1: {a,b,c,d} [mm] \to [/mm] {b,a,d,c}  

k2:{a,b,c,d} [mm] \to [/mm] {...,...,...,...}  usw.

aber dann hab ich ja das  problem, dass nicht ersichtlich ist, dass die bildmenge von k irgendwie geordnet sein soll oder ?

mein problem besteht eigentlich nur darin, das ich nicht weiß wie ich das aufschreiben soll ..

vielen dank schon mal für die hilfe :-)

Bezug
                        
Bezug
bijektive abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 So 28.10.2007
Autor: angela.h.b.


>  wenn ich einfach nur ein "paar" elemente von J aufzählen
> will, wie müsste ich das denn aufschreiben ?
>  
> k1: {a,b,c,d} [mm]\to[/mm] {b,a,d,c}  
>
> k2:{a,b,c,d} [mm]\to[/mm] {...,...,...,...}  usw.

Hallo,

das, was Du hier schreibst, ist nahe an der [Url=http://de.wikipedia.org/wiki/Permutation#Matrixdarstellung]Matrixdarstellung[/url] für Permutationen.

- Du könntest diese Schreibweise kurz erklären und dann die 24 Elemente aufzählen.

- Du könntest "Permutation" erklären und sagen, daß in  der Menge sämtlcihe Permutationen sind

- Du sagst einfach, daß in der Menge sämtliche Permutationen von a,b,c,d sind und baust darauf, daß die Bereitschaft besteht, das zu verstehen. Wenn Du vorher sinnvoll begründest, wie Du darauf gekommen bist, sollte das eigentlich auch keine Probleme geben.

- Ansonsten so richtig selbstgehäkelt:

In der Menge sind die Funktionen id, [mm] f_2 [/mm] bis [mm] f_{24} [/mm] mit

[mm] f_2(a)= [/mm]
[mm] f_2(b)= [/mm]
[mm] f_2(c)= [/mm]
[mm] f_2(d)= [/mm]

[mm] f_3(a)= [/mm]
[mm] f_3(b)= [/mm]
[mm] f_3(c)= [/mm]
[mm] f_3(d)= [/mm]

usw.

- Oder 'ne Tabelle [mm] :\pmat{\overline{i}| & \underline{f_i(a)} &\underline{f_i(b)}&\underline{f_i(c)}&\underline{f_i(d)}\\ 1| & &&&\\ 2| & &&&\\ \vdots & &&&\\ 24| & &&&} [/mm]

Gruß v. Angla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]