www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - beweis für unabhängikeit von t
beweis für unabhängikeit von t < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis für unabhängikeit von t: hilfe beim Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 21.02.2007
Autor: Karlchen

Aufgabe
  Der Graph [mm] K_{t} [/mm] gegeben durch [mm] f_{t}(x)=x^{3}-2tx^{2}+t^{2}x, [/mm] die x-achse und die Gerade mit der Gleichung [mm] x=\bruch{1}{3}t [/mm] schließen eine Fläche ein. Der GRaph der Funktion g mit [mm] g(x)=4x^{3} [/mm] teilt diese Fläche in zwei Teile.
Zeige, dass das Verhältnis der Inahlte dieser Teilflächen unabhängig von t ist.

Tach zusammen!

also ich verstehe irgendwie nciht, wie ich hier vorgehen muss. Muss ich erst mal die ganzen Flächen berechen? würde ich dneke ich hinkriegen, aber ich versteh das mit dieser Anhängigkeit nicht, wie mach ich das?

wär echt lieb wenn mir da jemand einen tipp geben könnte

GRUß KARLCHEN

        
Bezug
beweis für unabhängikeit von t: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mi 21.02.2007
Autor: leduart

Hallo Karlchen
>  Der Graph [mm]K_{t}[/mm] gegeben durch
> [mm]f_{t}(x)=x^{3}-2tx^{2}+t^{2}x,[/mm] die x-achse und die Gerade
> mit der Gleichung [mm]x=\bruch{1}{3}t[/mm] schließen eine Fläche
> ein. Der GRaph der Funktion g mit [mm]g(x)=4x^{3}[/mm] teilt diese
> Fläche in zwei Teile.
> Zeige, dass das Verhältnis der Inahlte dieser Teilflächen
> unabhängig von t ist.
>  Tach zusammen!
>  
> also ich verstehe irgendwie nciht, wie ich hier vorgehen
> muss. Muss ich erst mal die ganzen Flächen berechen? würde
> ich dneke ich hinkriegen, aber ich versteh das mit dieser
> Anhängigkeit nicht, wie mach ich das?

Genau! die vorkommenden Flaechen berechnen, haengen erst mal von t ab.
Dann das Verhaeltnis der Flaechen bilden,(der 2 Teile) und sehen ob dabei t rausfaellt, dann ist das Verh. unabhaengig von t.
das ist alles.
Gruss leduart

Bezug
                
Bezug
beweis für unabhängikeit von t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mi 21.02.2007
Autor: Karlchen

achso, na dann werd ich das mal versuchen^^

danke euch 2!

Bezug
        
Bezug
beweis für unabhängikeit von t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 21.02.2007
Autor: Moham

Ich vermute du musst die beiden einzelnen Integrale berechnen und durcheinander teilen (Verhältnis). Das Ergebnis wird wohl sein das t sich rauskürzt.

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]