www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - beweis duale abbildung
beweis duale abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis duale abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 Sa 07.01.2006
Autor: delmio

hallo an alle!

ich soll folgende aufgabe lösen, bzw. beweisen, aber ich weiß nicht, wie ich den beweis angehen soll:

seien V,W endlichdimensionale k-Vektorräume, f: V --> W linear.
beweisen sie:
a) f** = f
b) ist f surjektiv, so ist f* injektiv

kann mir da jemand vielleicht weiterhelfen oder mir einen tipp geben?
danke!

        
Bezug
beweis duale abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:02 Sa 07.01.2006
Autor: delmio

tut mir leid, ich hab ganz vergessen, zu erwähnen, dass ich diese frage in keinem forum auf einer anderen internetseite gestellt habe!

Bezug
        
Bezug
beweis duale abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Sa 07.01.2006
Autor: choosy

Hattet ihr schon das die duale abbildung durch die transponierte matrix gegeben ist?
damit wär dann ales klar...

Bezug
                
Bezug
beweis duale abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Sa 07.01.2006
Autor: delmio

nein, hatten wir leider noch nicht... wir haben im zusammenhang mit dualen abbildungen gar nichts mit matrizen gemacht...
kannst du mir trotzdem weiterhelfen?

Bezug
        
Bezug
beweis duale abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Sa 07.01.2006
Autor: felixf


> hallo an alle!
>  
> ich soll folgende aufgabe lösen, bzw. beweisen, aber ich
> weiß nicht, wie ich den beweis angehen soll:
>  
> seien V,W endlichdimensionale k-Vektorräume, f: V --> W
> linear.
>  beweisen sie:
>  a) f** = f

Ich nehme mal an, ihr habt $V^*$ als die Menge der Linearformen $V [mm] \to [/mm] k$ definiert, und $f^*$ dann als die Abbildung $W^* [mm] \to [/mm] V^*$, die einer Linearform $g : W [mm] \to [/mm] k$ die Linearform $g [mm] \circ [/mm] f : V [mm] \to [/mm] k$ zuweist.

So. Nun habt ihr irgendwo gezeigt, dass $V = [mm] V^{**}$ [/mm] ist, wobei das Gleichheitszeichen keine echte Gleichheit, sondern ein kanonischer Isomorphismus ist. Sei dieser etwa mit [mm] $\varphi_V [/mm] : [mm] V^{**} \to [/mm] V$ bezeichnet, und der fuer $W$ mit [mm] $\varphi_W [/mm] : [mm] W^{**} \to [/mm] W$. Dann bedeutet $f = [mm] f^{**}$ [/mm] hier gerade, dass [mm] $f^{**} [/mm] = [mm] \varphi_W \circ [/mm] f [mm] \circ \varphi_V$ [/mm] ist. (Bzw. andersherum wenn ihr die Isomorphismen a la $V [mm] \to V^{**}$ [/mm] definiert habt, das umzustellen solltest du mal selber probieren.)

Und das rechnest du jetzt nach, indem du dir ein Element aus [mm] $V^{**}$ [/mm] nimmst und das auf beiden Seiten einsetzt: wenn dasselbe herauskommt, sind die Abbildungen [mm] $V^{**} \to W^{**}$ [/mm] gleich.

>  b) ist f surjektiv, so ist f* injektiv

Das kannst du einfach direkt nachrechnen. Nimm an [mm] $f^*(\varphi) [/mm] = 0$ fuer eine Linearform [mm] $\varphi [/mm] : W [mm] \to [/mm] k$. Dann musst du zeigen, dass [mm] $\varphi$ [/mm] bereits gleich $0$ ist, also [mm] $\varphi(w) [/mm] = 0$ fuer alle $w [mm] \in [/mm] W$. Und jetzt schau dir mal die Definition von [mm] $\varphi(w)$ [/mm] an.

HTH & LG, Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]