www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - "bestimmung ganzrationaler funktionen"
"bestimmung ganzrationaler funktionen" < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"bestimmung ganzrationaler funktionen": hilfe dei einer aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:55 Sa 19.11.2005
Autor: sa_chick

hallo alle!
Ich brauch mal eure hilfe. da ich im Unterricht nicht anwesend war muss ich dieses Thema nun nacharbeiten+hab noch einige Schwierigkeiten beim Lösen einer Aufgabe:

Bestimmen Sie ALLE ganzrationale Funktionen 3ten Grades, deren Graph
a) punktsymmetrisch zum Ursprung ist und für x=2 einen Extrempunkt hat
b) im Ursprung einen Wendepunkt mit der Wendetangente y=x hat.



a) Ansatz: ax³+bx; f1(2)=0
doch wie berechne ich die Aufgabe mit so weinig bedingungen
und wie berechnet man ALLE?



b) ax³+bx²+cx+d

f(0)=0
a0³+b0²+c0+d=0        d=0

f2(0)=0
6a0+20=0          ???

f1(1)=0
3a+2b+c=0




Und nun?Ihr merkt schon ich brauch dringend Hilfe=)wäre nett wenn ihr mir helfen köntet!!!!
Schönes Wochenende

        
Bezug
"bestimmung ganzrationaler funktionen": Korrekturen (edit.)
Status: (Antwort) fertig Status 
Datum: 10:30 Sa 19.11.2005
Autor: Loddar

Hallo sa_chick,

[willkommenmr] !!


> a) Ansatz: ax³+bx; f1(2)=0

Du meinst hier wohl bei der zweiten Gleichung die erste Ableitung?

Der Ansatz ist auf jeden Fall richtig [ok] .


> doch wie berechne ich die Aufgabe mit so weinig bedingungen

Nun berechne doch mal die erste Ableitung und setzte den Wert $x \ = ß 2$ ein: $f'(2) \ = \ ...$

Diese Gleichung kannst Du dann z.B. nach $b \ =\ ...$ umstellen und in die Ausgangsgleichung einsetzen.


> und wie berechnet man ALLE?

Nun haben wir ja eine Lösung, in der noch ein unbekanntes $a_$ steckt. Dies ist nun unser Parameter, und alle Funktionen mit beliebigem $a_$ erfüllen die gewünschten Eigenschaften.


> b) ax³+bx²+cx+d
>  
> f(0)=0
> a0³+b0²+c0+d=0        d=0

[ok]


  

> f2(0)=0
> 6a0+20=0          ???

[notok] Die 2. Ableitung lautet doch: $f''(x) \ = \ 6a*x + b$

Edit: Anfängerfehler meinerseits korrigiert. Loddar


Was erhältst Du also für $f''(0)_$ ?



> f1(1)=0

[notok] Die Steigung soll an der Wendestelle ja nicht den Wert $0_$ haben, sondern denselben Wert wie die Gerade $y \ = \ x \ = \ [mm] \red{1}*x$ [/mm] .


Also ... ?


Gruß
Loddar


Bezug
                
Bezug
"bestimmung ganzrationaler funktionen": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 So 20.11.2005
Autor: Andre

Loddar: Die 2. Ableitung lautet doch: $ f''(x) \ = \ [mm] 3a\cdot{}x^2 [/mm] + b $
------------------------------------------------------------------------

das ist nicht richtig, weil :

$ f(x) = [mm] ax^{3}+bx^{2}+cx+d [/mm] $

=>

$ f'(x) = [mm] 3ax^{2}+2bx^{1}+cx^{0} [/mm] = [mm] 3ax^{2}+2bx+c [/mm] $

=>

$ f''(x)= [mm] 6ax^{1}+2bx^{0} [/mm] = 6ax+2b $


Bezug
                        
Bezug
"bestimmung ganzrationaler funktionen": Mathematischer Tiefschlaf
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 So 20.11.2005
Autor: Loddar

Guten Morgen Andre!


Na, da habe ich mir wirklich einen Klops geleistet [kopfschuettel] ... vielen Dank für den Hinweis, ich habe es oben auch bereits korrigiert.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]