besondere Lage von Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Beschreibe die besondere Lage der gegebenen Ebene
a) [mm] \vec x [/mm] = [mm] \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} [/mm] + r [mm] \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} [/mm] + s [mm] \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
[/mm]
b) [mm] \vec x [/mm] = [mm] \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} [/mm] + r [mm] \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} [/mm] + s [mm] \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}
[/mm]
c) [mm] \vec x [/mm] = [mm] \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} [/mm] + r [mm] \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} [/mm] + s [mm] \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}
[/mm]
d) [mm] \vec x [/mm] = [mm] \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} [/mm] + r [mm] \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm] + s [mm] \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
[/mm]
|
Hey.
Ich rätsel jetzt schon ne ganze Weile an dieser Aufgabe rum. Leider kann ich mir das räumlich alles nicht so gut vorstellen.
Ich habe keine Ahnung, woran ich erkennen kann wie bzw. wo die Ebenen liegen. Wäre super nett, wenn mir jemand ein wenig helfen bzw. mir einen Tipp geben könnte.
Vielen Dank.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:16 Di 08.04.2008 | Autor: | LadyVal |
Ich sehe eben, dass man wohl nicht die Lage der Ebenen ZUEINANDER beschreiben soll, sondern jede Ebene für sich betrachten.
In dem Fall könnte auffallen, dass die Richtungsvektoren Besonderheiten aufweisen, nämlich allermeistens die Koordinatenachsen beschreiben.
Das hier lass ich mal eingeklammert stehen, falls man doch die Lage der Ebenen zueinander beschreiben soll:
(Ich würde jetzt die jeweiligen Normalenvektoren (beispielsweise mittels Kreuzprodukt aus den Richtungsvektoren) berechnen.
- Wenn manche linear abhängig sind, sind die entsprechenden Ebenen parallel oder identisch. (Ob nun echt parallel oder identisch kann man leicht rausfinden, indem man die beiden Ebenen, eine in Koordinatenform, die andere in Paramterform) gleichsetzt. Erhält man im Ergebnis einen Widerspruch, sind sie echt parallel, ansonsten sind sie identisch).
- Wenn manche Normalenvektoren linear unabhängig sind, schneiden sich die entsprechenden Ebenen in einer Geraden.
Hilft Dir diese bloße Theorie weiter?)
|
|
|
|