www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - berchnung eines Kegels
berchnung eines Kegels < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berchnung eines Kegels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Do 19.05.2005
Autor: jojo611

hallo
ich hab eine Aufgabe aufbekommen, die ich nicht wirklcih verstehe bzw ich nicht weiß, wie ich dir Formeln umstellen muss um es raus zubekommen. Hier die Aufgabe: Berechne h, s und  [mm] \alpha [/mm] des Kegels.
                            geg.: O=46,97 dm² also 4697 cm²
                                      r=23,0 cm

wie kann man h, s und [mm] \alpha [/mm]  ausrechnen, ich komm nicht auf die Formeln. bitte hilft mir
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
berchnung eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Do 19.05.2005
Autor: Fugre


> hallo
> ich hab eine Aufgabe aufbekommen, die ich nicht wirklcih
> verstehe bzw ich nicht weiß, wie ich dir Formeln umstellen
> muss um es raus zubekommen. Hier die Aufgabe: Berechne h, s
> und  [mm]\alpha[/mm] des Kegels.
>                              geg.: O=46,97 dm² also 4697
> cm²
>                                        r=23,0 cm
>  
> wie kann man h, s und [mm]\alpha[/mm]  ausrechnen, ich komm nicht
> auf die Formeln. bitte hilft mir
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Hallo Johanna,

genaueres zum Kegel findest du  []hier.
Aber versuchen wir zunächst einmal den Einstieg in die Aufgabe.
Also die Formel für die Oberfläche lautet:
$O = [mm] r^2 \cdot \pi [/mm] + [mm] \pi \cdot [/mm] r [mm] \cdot [/mm] s = r [mm] \cdot \pi \cdot [/mm] (r + s)$
von dieser Formel kennen wir nun zwei Dinge, zum einen den Radius ($r=23cm$) und die
Oberfläche [mm] ($O=4697cm^2$). [/mm] Mit diesem Wissen können wir die dritte Variable $s$ bestimmen.
Also:
[mm] $4697cm^2 [/mm] = [mm] (23cm)^2 \cdot \pi [/mm] + [mm] \pi \cdot [/mm] 23cm [mm] \cdot [/mm] s $
nun rechnen wir [mm] $-529cm^2*\pi$ [/mm]
[mm] $4697cm^2-529cm^2*\pi=23cm*\pi*s$ [/mm]
Jetzt teilen wir durch [mm] $\pi$ [/mm]
[mm] $\frac{4697cm^2}{\pi}-529cm^2=23cm*s$ [/mm]
und durch $23cm$
[mm] $\frac{4697cm^2}{23cm*\pi}-23cm=s$ [/mm]
[mm] $s=\frac{204\frac{5}{23}cm}{\pi}-23cm$ [/mm]

Wenn du dir nun die Skizze zum Kegel anguckst, wirst du festellen, dass $r, s und h$ ein rechtwinkliges
Dreieck aufspannen. Mit dem Satz des Pythagoras kommst du dann auf $h$. Wenn du jetzt noch die
trigonometrischen Funktion, also Sinus, Cosinus oder Tangens, verwendest, kommst du auch noch auf
den Winkel [mm] $\alpha$. [/mm]

Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]