www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - bedingte Erwartung
bedingte Erwartung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Erwartung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 So 10.02.2013
Autor: marianne88

Guten Abend

Wenn [mm] \tau[/mm] eine Stoppzeit ist, [mm] X[/mm] eine Z.V. und ich die Grösse betrachte:

[mm]\int_BE[\mathbf1_{\{\tau > t\}}X|\mathcal{G}_t]P[\tau > t|\mathcal{G}_t]dP[/mm]

Wieso gilt:

[mm]\int_BE[\mathbf1_{\{\tau > t\}}X|\mathcal{G}_t]P[\tau > t|\mathcal{G}_t]dP=\int_B\mathbf1_{\{\tau >t\}}E[\mathbf1_{\{\tau > t\}}X|\mathcal{G}_t]dP[/mm]

Danke für eure Antworten und einen schönen Sonntag Nachmittag.


Lieb Grüsse

marianne

        
Bezug
bedingte Erwartung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 So 10.02.2013
Autor: Gonozal_IX

Hiho,

was ist [mm] $\mathcal{G}_t$? [/mm]
Ist [mm] \tau [/mm] eine [mm] \mathcal{G}_t [/mm] Stoppzeit?

Wenn ja, dann gilt [mm] $P[\tau [/mm] > t | [mm] \mathcal{G}_t] [/mm] = [mm] 1_{\{\tau > t\}}$ [/mm]

Mach dir das mal klar.
Allerdings gilt dann auch:

[mm] $E[\mathbf1_{\{\tau > t\}}X|\mathcal{G}_t] [/mm] = [mm] 1_{\{\tau > t\}}E[X|\mathcal{G}_t]$ [/mm]

und damit sogar:

$ [mm] \int_BE[\mathbf1_{\{\tau > t\}}X|\mathcal{G}_t]P[\tau [/mm] > [mm] t|\mathcal{G}_t]dP=\int_B\mathbf1_{\{\tau >t\}}E[X|\mathcal{G}_t]dP [/mm] $

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]