www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - auslastungsmodell
auslastungsmodell < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

auslastungsmodell: erklärung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:55 Mo 01.09.2008
Autor: mef

Aufgabe
Eine firma hat 3 telefonleitungen,die von 10 sacharbeitern genutzt werden.Jeder von ihnen benötigt eine leitung durchschnittlich für 12 minuten.

a) wie groß ist die wahrscheinlichkeit, dass
(1) die 3 leitungen ausreichen?
(2) die leitungen ausreichen, wenn eine weitere leitung eingerichtet wird?

hallo,
diese aufgabe gehört zur anwendungsaufgabe der binomialverteilung( auslastungsmodell)

die formel für diese art von aufgaben ist wie folgt:
[mm] P(X=k)=\vektor{n \\ k} *\bruch{m}{60}^{k} [/mm] * [mm] (1-\bruch{m}{60})^{n-k} [/mm]

nun n personen üben während eines gewissen zeitraums pro stunde (im Mittel m minuten) eine bestimmte tätigkeit aus.
k= personen gleichzeitig die tätigkeit ausüben.


also wenn ich die werte einsetze kommt folgendes raus:
120* 1/125 * 0,2097152 = 0,20132....

um den ersten teil der aufgabe zu beantworten: die wahrscheinlichkeit beträgt c.a. 20 prozent, dass die 3 leitungen ausreichen.

für den zweiten teil muss ich statt der 3 eine 4 einsetzen oder?ß

ist mein ergebnis von teil 1 richtig?

vielen dank im voraus

gruß mef

        
Bezug
auslastungsmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Di 02.09.2008
Autor: rabilein1


> Jeder von ihnen benötigt eine leitung
> durchschnittlich für 12 minuten.

Diese Formulierung ist unverständlich. Es müsste wohl heißen:
Jeder von ihnen benötigt eine leitung durchschnittlich für 12 minuten in einer stunde.

> die formel für diese art von aufgaben ist wie folgt:
>  [mm]P(X=k)=\vektor{n \\ k} *\bruch{m}{60}^{k}[/mm] *
> [mm](1-\bruch{m}{60})^{n-k}[/mm]

Es ist ja toll, wenn du bereits eine fertige Formel vorliegen hast. Dann musst du ja nur noch die entsprechenden Werte einsetzen. Ich kann die Richtigkeit dieser Formel nicht nachvollziehen. Kannst du das??

Ich selbst würde es so machen:
Die Wahrscheinlichkeit bei jedem einzelnen Sachbearbeiter, dass er gerade telefonieren will, ist 1:5 (12 Minuten von 60 Minuten).
Die Gegen-Wahrscheinlichkeit (dass er gerade nicht telefonieren will) ist also 4:5.
Diese Gegen-Wahrscheinlichkeit würde ich als Basis aller zukünftigen Berechnungen nehmen.

Also ausrechnen: Wie groß ist die Wahrscheinlichkeit, dass 0 , 1 , 2 , 3 ... 10 Leute gerade nicht telefonieren.
(10 Nicht-Telefonierer ist einfach, nämlich  [mm] (\bruch{4}{5})^{10} [/mm]

Wenn du nun die einzelnen Werte ermittelt hast, dann kannst du sehen, wie groß die Wahrscheinlichkeit ist, dass höchstens drei Leute (0,1,2 oder 3) telefonieren.

Dann wirst du feststellen, ob das mit deiner obigen Formel übereinstimmt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]