www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - asymptotenfunktion
asymptotenfunktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

asymptotenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Mi 31.08.2005
Autor: karpfen

[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.]

also ich habe eine eine funktion gegeben

f(x) =  [mm] \bruch{ 2x²+3x }{ (x+3)²} [/mm]

nach meinen bisher errungenen kenntnissen muss ich doch 2 mal nacheinander die polynomdivison mit (x+3) ausführen,oder?!
leider geht dies schon beim ersten mal nicht auf
ich erhalte dann

f(x) = [mm] \bruch{(2x-3 + \bruch{9}{x+3})(x+3)}{(x+3)²} [/mm]

meine frage also wie komme ich dann an die asymptotenfunktion?


        
Bezug
asymptotenfunktion: Weiter machen ...
Status: (Antwort) fertig Status 
Datum: 14:19 Mi 31.08.2005
Autor: Roadrunner

Hallo karpfen,

[willkommenmr] !!


Da bist Du doch schon auf einem richtigen weg ...


> f(x) = [mm]\bruch{(2x-3 + \bruch{9}{x+3})(x+3)}{(x+3)²}[/mm]


Das schreiben wir mal um, nachdem wir zunächst gekürzt haben:

[mm]f(x) \ = \ \bruch{2x-3 + \bruch{9}{x+3}}{x+3} \ = \ \bruch{2x-3}{x+3} + \bruch{\bruch{9}{x+3}}{x+3} \ = \ \bruch{2x-3}{x+3} + \bruch{9}{(x+3)^2}[/mm]


Nun für den vorderen Bruch die zweite MBPolynomdivision durchführen.

Ich erhalte als Asymptotenfunktion:  [mm] $y_A [/mm] \ = \ 2$


Gruß vom
Roadrunner


Bezug
        
Bezug
asymptotenfunktion: nachtrag des authors
Status: (Frage) beantwortet Status 
Datum: 14:22 Mi 31.08.2005
Autor: karpfen

leider habe ich, da ich neu in diesem forum bin, nicht gefunden wo  ich meine frage editieren kann, deswegen mach ich einen neuen beitrag

ich hab jetzt einfach mal die 2. polynomdivision ausgeführt

mein ergeniss war

2 - [mm] \bruch{9}{x} +\bruch{27}{x²} [/mm] ......

wenn ich hier das verhalten auf  [mm] \limes_{x\rightarrow\infty} [/mm] untersuche müsste doch schlicht und einfach 2 rauskommen oder? ist das dann auch die asmptotenfunktion a(x) = 2 ?

wäre nett wenn mir das jemand bestätigen könnte




Edit: roadrunner war schneller als ich meine vermutung abtippen konnte!
damit wäre alles geklärt! DANKE
ps: ich denke ihr werdet mich hier ab heute öfters sehen!

Bezug
                
Bezug
asymptotenfunktion: Polynomdivision falsch
Status: (Antwort) fertig Status 
Datum: 14:38 Mi 31.08.2005
Autor: Roadrunner

Hallo karpfen!


Das Endergebnis mit der Asymptote stimmt. Allerdings ist Dir bei der Poynomdivision etwas verquert gelaufen.


Es muss hier am Ende heißen:  $f(x) \ = \ 2 - [mm] \bruch{9}{x+3} [/mm] + [mm] \bruch{9}{(x+3)^2}$ [/mm]

Bitte nochmals nachrechnen / kontrollieren ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]