arithmetische Mittel von NF < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:07 Mo 10.11.2014 | Autor: | sissile |
Aufgabe | Sei [mm] (a_n) [/mm] eine Nullfolge, d.h. [mm] lim_{n->\infty} a_n [/mm] =0. Sei [mm] b_n [/mm] das arithmetische Mittel der ersten n Glieder von [mm] a_n,
[/mm]
[mm] b_n [/mm] = [mm] \frac{1}{n} \sum_{k=1}^n a_k [/mm] = [mm] \frac{a_1+a_2+..+a_n}{n}
[/mm]
Zeigen Sie, dass [mm] lim_{n->\infty} b_n [/mm] =0 |
Hallo zusammen,
Ja wie man merkt wiederhole ich gerade Analysis grundauf ;P
Versuch1:
[mm] |\frac{a_1+a_2+..+a_n}{n}| \le \frac{|a_1|+..+|a_n|}{n}
[/mm]
Ich könnte die [mm] |a_i| [/mm] alle durch eine Schranke abschätzen, aber das bringt mich irgendwie nicht weiter.
Außerdem kann ich die ersten FOlgenglieder ja nicht durch ein [mm] \epsilon [/mm] abschätzen, da ich [mm] |a_n|< \epsilon [/mm] ja erst ab einen fixen [mm] N_0 [/mm] habe.(Konvergenz von [mm] a_n)
[/mm]
(Man soll hier nicht mit der Begründung: beschränkt&monoton arbeiten, weil dass zu dem Zeitpunkt noch nicht dran war)
Versuch2:
Um [mm] lim_{n->\infty} \frac{a_1+a_2+..+a_n}{n}= \frac{lim_{n->\infty}(a_1+a_2+..+a_n)}{n}
[/mm]
zu verwenden müsste ich wissen ob [mm] lim_{n->\infty} \sum_{i=1}^n a_i [/mm] existiert. Aber durch [mm] a_n [/mm] eine Nullfolge, weiß ich das ja leider nicht.(->Harmonische Reihe)
Ich komme da nicht vorran...
LG,
sissi
|
|
|
|
> Sei [mm](a_n)[/mm] eine Nullfolge, d.h. [mm]lim_{n->\infty} a_n[/mm] =0. Sei
> [mm]b_n[/mm] das arithmetische Mittel der ersten n Glieder von [mm]a_n,[/mm]
> [mm]b_n[/mm] = [mm]\frac{1}{n} \sum_{k=1}^n a_k[/mm] =
> [mm]\frac{a_1+a_2+..+a_n}{n}[/mm]
> Zeigen Sie, dass [mm]lim_{n->\infty} b_n[/mm] =0
> Hallo zusammen,
>
> Ja wie man merkt wiederhole ich gerade Analysis grundauf
> ;P
>
> Versuch1:
> [mm]|\frac{a_1+a_2+..+a_n}{n}| \le \frac{|a_1|+..+|a_n|}{n}[/mm]
>
> Ich könnte die [mm]|a_i|[/mm] alle durch eine Schranke abschätzen,
> aber das bringt mich irgendwie nicht weiter.
> Außerdem kann ich die ersten FOlgenglieder ja nicht
> durch ein [mm]\epsilon[/mm] abschätzen, da ich [mm]|a_n|< \epsilon[/mm] ja
> erst ab einen fixen [mm]N_0[/mm] habe.(Konvergenz von [mm]a_n)[/mm]
> (Man soll hier nicht mit der Begründung:
> beschränkt&monoton arbeiten, weil dass zu dem Zeitpunkt
> noch nicht dran war)
>
> Versuch2:
> Um [mm]lim_{n->\infty} \frac{a_1+a_2+..+a_n}{n}= \frac{lim_{n->\infty}(a_1+a_2+..+a_n)}{n}[/mm]
>
> zu verwenden müsste ich wissen ob [mm]lim_{n->\infty} \sum_{i=1}^n a_i[/mm]
> existiert. Aber durch [mm]a_n[/mm] eine Nullfolge, weiß ich das ja
> leider nicht.(->Harmonische Reihe)
>
> Ich komme da nicht vorran...
> LG,
> sissi
Versuche mal Folgendes:
Da [mm] $(a_n)$ [/mm] Nullfolge: [mm] $\forall \epsilon [/mm] >0 [mm] \exists n(\epsilon) \in \mathbb{N} \forall n\geqslant n(\epsilon): |a_n| [/mm] < [mm] \epsilon$. [/mm] Sei also [mm] $\epsilon [/mm] >0$ und ein [mm] $n(\epsilon)$ [/mm] entsprechend gewählt. Teile dann deine Summe auf für [mm] $n\geqslant n(\epsilon)$: [/mm]
[mm] $b_n [/mm] = [mm] \frac{1}{n} \sum_{k=1}^n a_n [/mm] = [mm] \frac{1}{n} \left(\underbrace{\sum_{k=1}^{n(\epsilon)} a_n}_{=:S_1(n)} + \underbrace{\sum_{k=n(\epsilon)+1}^n a_n}_{=:S_2(n)} \right) [/mm] $
Offensichtlich gilt dann [mm] $|b_n| \leqslant \frac{1}{n} \left(|S_1(n)| + |S_2(n)|\right)$. [/mm] Schätze nun für dieses feste $n$ [mm] $|S_2(n)|$ [/mm] nach oben ab (beachte, dass [mm] $(a_n)$ [/mm] NF). Hilft das schon weiter?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:04 Di 11.11.2014 | Autor: | sissile |
Teile dann deine Summe auf für [mm]n\geqslant n(\epsilon)[/mm]:
>
> [mm]b_n = \frac{1}{n} \sum_{k=1}^n a_n = \frac{1}{n} \left(\underbrace{\sum_{k=1}^{n(\epsilon)} a_n}_{=:S_1(n)} + \underbrace{\sum_{k=n(\epsilon)+1}^n a_n}_{=:S_2(n)} \right)[/mm]
>
> Offensichtlich gilt dann [mm]|b_n| \leqslant \frac{1}{n} \left(|S_1(n)| + |S_2(n)|\right)[/mm].
> Schätze nun für dieses feste [mm]n[/mm] [mm]|S_2(n)|[/mm] nach oben ab
> (beachte, dass [mm](a_n)[/mm] NF). Hilft das schon weiter?
Hallo,
Danke für deine Antwort.
Mit dem Laufindex stimmt dann aber was nicht...
Bzw. gehört da doch dann überall [mm] a_k [/mm] stehen?
[mm] |b_n| [/mm] = |1/n [mm] \sum_{k=1}^n a_k| [/mm] = | 1/n * [mm] (\sum_{n=1}^N a_k [/mm] + [mm] \sum_{k=N+1}^n a_k)| \le [/mm] 1/n * [mm] (|\sum_{k=1}^N a_k| [/mm] + [mm] |\sum_{k=N+1}^n a_k|) \le [/mm] 1/n * [mm] (\sum_{k=1}^N |a_k| [/mm] + [mm] \sum_{k=N+1}^n |a_k|) \le [/mm] 1/n [mm] *(\sum_{k=1}^N |a_k| [/mm] +(n-N)* [mm] \epsilon)
[/mm]
Da [mm] a_n [/mm] NF => [mm] a_n [/mm] beschränkt, d.h. [mm] \exists [/mm] K>0 [mm] \forall [/mm] k [mm] \in \IN: |a_k| \le [/mm] K
1/n [mm] *(\sum_{k=1}^N |a_k| [/mm] +(n-N)* [mm] \epsilon) \le [/mm] 1/n *(N K +(n-N)* [mm] \epsilon)
[/mm]
LG,
sissile
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:11 Di 11.11.2014 | Autor: | Teufel |
Hi!
Ok, also du hast nun [mm] |b_n|\le\frac{1}{n}(\summe_{k=1}^{N}|a_k|+(n-N)\varepsilon). [/mm] Was ist denn jetzt der Grenzwert von der rechten Folge [mm] \frac{1}{n}(\summe_{k=1}^{N}|a_k|+(n-N)\varepsilon)? [/mm] Beachte, dass [mm] \summe_{k=1}^{N}|a_k| [/mm] konstant ist.
Und was bedeutet das für den Grenzwert von [mm] b_n?
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:09 Mi 12.11.2014 | Autor: | sissile |
[mm] \frac{1}{n}(\summe_{k=1}^{N}|a_k|+(n-N)\varepsilon) [/mm] = [mm] \frac{c+n\epsilon-N\epsilon}{n} <\frac{c}{n}+\epsilon
[/mm]
wobei c=$ [mm] \summe_{k=1}^{N}|a_k| [/mm] > 0$
Da ja c/n eine Nullfolge für [mm] n->\infty [/mm] ist hab ich gezeigt, dann [mm] b_n [/mm] eine Nullfolge ist oder?
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:28 Mi 12.11.2014 | Autor: | fred97 |
> [mm]\frac{1}{n}(\summe_{k=1}^{N}|a_k|+(n-N)\varepsilon)[/mm] =
> [mm]\frac{c+n\epsilon-N\epsilon}{n} <\frac{c}{n}+\epsilon[/mm]
>
> wobei c=[mm] \summe_{k=1}^{N}|a_k| > 0[/mm]
Vorsicht: es ist c [mm] \ge [/mm] 0. Mehr kann man nicht sagen
> Da ja c/n eine
> Nullfolge für [mm]n->\infty[/mm] ist hab ich gezeigt, dann [mm]b_n[/mm]
> eine Nullfolge ist oder?
Ja
FRED
>
> LG,
> sissi
|
|
|
|