www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - arithmetische Folgen
arithmetische Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

arithmetische Folgen: Aufgaben...
Status: (Frage) beantwortet Status 
Datum: 19:20 Do 21.09.2006
Autor: martinp89bc

Aufgabe
Bestimmen sie die Folgenglieder [mm] a_7 [/mm] und a_10 für eine arithmetische Folge [mm] (a_n)mit [/mm]

a) [mm] a_1=2 [/mm] und [mm] a_5=14 [/mm]

b) [mm] a_4=6 [/mm] und [mm] a_6=18 [/mm]

Hallo,

haben heute ein neues Thema (arithmetische Folgen) begonnen, und schon Hausaufgaben bekommen, leider beschreibt das Buch sehr wenig, und genau, so dass es mir nicht möglich war, die Aufgaben zu berechnen...
Wäre euch dankbar, wenn ihr mir das erklären könntet, Schritt für Schritt, wie sowas funktioniert....

Mfg und Vielen Dank schonmal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Martin

        
Bezug
arithmetische Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Do 21.09.2006
Autor: Teufel

Hallo!
Eine arithmetische Folge ist ja eine Folge, bei der [mm] \bruch{a_{n}}{a_{n-1}}=d [/mm] ist. Oder in Worten: Der Abstand zwischen 2 aufeinanderfolgenden Folgenglieder ist gleich.

Und diesen Abstand d musst du bestimmen.

[mm] a_{1}=2 [/mm]
[mm] a_{5}=14 [/mm]

Das heißt, dass [mm] a_{1}+d+d+d+d=a_{5} [/mm] sind. (denn [mm] a_{1}+d=a_{2}, a_{1}+d+d=a_{3},..) [/mm]
[mm] a_{1}*4d=a_{5} [/mm]
2+4d=14
4d=12
d=3


Die explizite Folgenvorschrift einer arithmetischen Folge ist:
[mm] a_{n}=a_{1}+(n-1)d [/mm]
Eingestezt ergibt das: [mm] a_{n}=2+(n-1)*3=2+3n-3=-1+3n [/mm]
So, nun kannst du bequem für n das Folgenglied einsetzen, was du brauchst. Also einmal 7 und einmal 10.


Bei b) das selbe. Du musst d herausfinden, und danach aber was [mm] a_{1} [/mm] ist. Aber dazu musst du ja nur das gefundene d von [mm] a_{4} [/mm] 3mal abziehen. Dann kannst du wieder eine Folgenvorschrift bilden und [mm] a_{7} [/mm] und [mm] a_{10} [/mm] berechnen!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]