www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - arctan=cot?
arctan=cot? < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

arctan=cot?: trigonometrie
Status: (Frage) beantwortet Status 
Datum: 12:44 Mi 13.05.2009
Autor: Danielt23

Aufgabe
Hallo erstmal,

tan=sin/cos das ist soweit richtig
cot=cos/sin ich hoffe, dass das auch soweit richtig ist


danke

was ist aber nun der

arctan

wie kann man den anders schrieben? in was für einer beziehung steht er zu sin, cos u. tan.

ich hab emal irgendwo im gedächtnis gespeichert, dass der arctan die umkehrfunktion von tan ist also wieder cos/sin was aber der cot aist. und cot ist nicht gleich tan.. weiss jemand rat?

        
Bezug
arctan=cot?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Mi 13.05.2009
Autor: schachuzipus

Hallo Daniel,


> Hallo erstmal,
>  
> tan=sin/cos das ist soweit richtig
>  cot=cos/sin ich hoffe, dass das auch soweit richtig ist [ok]
>  
>
> danke
>  was ist aber nun der
>
> arctan
>  
> wie kann man den anders schrieben? in was für einer
> beziehung steht er zu sin, cos u. tan.
>  
> ich hab emal irgendwo im gedächtnis gespeichert, dass der
> arctan die umkehrfunktion von tan [ok]

> ist also wieder cos/sin [notok]

Die Verwirrung mag daher rühren, dass man die Umkehrfunktion zu einer Funktion $f$ oft als [mm] $f^{-1}$ [/mm] schreibt.

Damit ist aber nicht gemeint [mm] $\frac{1}{f}$ [/mm] !!

Es ist immer [mm] $f\left(f^{-1}\right(x))=f^{-1}(f(x))=x$, [/mm] also [mm] $(f\circ f^{-1})(x)=(f^{-1}\circ [/mm] f)(x)=x$

Vllt. schreibst du besser statt [mm] $\tan^{-1}(x)$ [/mm] besser [mm] $\tan^{invers}(x)$, [/mm] denn wie gesagt [mm] $\tan^{-1}(x)\neq\frac{1}{\tan(x)}$ [/mm]

> was aber der cot aist. und cot ist nicht gleich tan.. weiss
> jemand rat?

Man kann die Umkehrfunktion des Tangens, also den $arctan$ kaum durch Sinus, Cosinus oder Tangens ausdrücken.

Zumindest ist mir davon noch nix zu Ohren gekommen (was nix heißen muss ;-))

Es gibt aber eine Reihenentwicklung: [mm] $\arctan(x)=\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}$ [/mm]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]