www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - allgemeiner ggT
allgemeiner ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allgemeiner ggT: Schlussfolgerungen
Status: (Frage) beantwortet Status 
Datum: 21:38 Di 19.04.2011
Autor: clemenum

Aufgabe
Man zeige für [mm] $a,b_1,\ldots,b_k \in \mathbb{Z},$ [/mm] dass [mm] $ggT(a,b_1\ldots b_k) [/mm] = 1$ [mm] $\Longleftrightarrow$ $ggT(a,b_i)=1.$ [/mm] für [mm] $1\le [/mm] i [mm] \le [/mm] k.$

Beweis:
[mm] $(\Leftarrow):$ \\ [/mm]
$ [mm] ggT(a,b_i) [/mm] = 1 [mm] \Rightarrow [/mm] 1 = [mm] \prod_i(a\alpha_i [/mm] + [mm] b_i \beta [/mm] _ i ) = [mm] (a\alpha_1 [/mm] + [mm] b_1\beta_1)(a\alpha_2 [/mm] + [mm] b_2 \beta_2) \ldots (a\alpha_k [/mm] + [mm] b_k\beta_k) [/mm] = ax + [mm] \prod_{i=1}^k b_i\beta [/mm] _i [mm] \Rightarrow ggT(a,\prod b_i) [/mm] =1   $ [mm] \\ [/mm]
[mm] $(\Rightarrow):$ \\ [/mm]
Es gelte $|d| [mm] \neq [/mm] 1 $ und $d|a$. [mm] \\ [/mm]
[mm] $\Rightarrow [/mm] d [mm] \nmid \prod_{i=1}^{k} b_i \Rightarrow d\nmid b_i \forall i\in\{1,\ldots,k\}. \Rightarrow ggT(a,b_i) [/mm] = 1.$

Stimmt das so?
Mein Problem: Die letzte Schlussfolgerung könnte sicher noch weiter zerlegt werden, doch leuchtet mir dies intuitiv schon ein, sodass ich keinen weiteren für nötig halte bzw. auch keinen solchen finde,
Könnte mir da jemand weiterhelfen?

        
Bezug
allgemeiner ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Di 19.04.2011
Autor: abakus


> Man zeige für [mm]a,b_1,\ldots,b_k \in \mathbb{Z},[/mm] dass
> [mm]ggT(a,b_1\ldots b_k) = 1[/mm] [mm]\Longleftrightarrow[/mm] [mm]ggT(a,b_i)=1.[/mm]
> für [mm]1\le i \le k.[/mm]

Diese Aussage ist falsch, wie ein Gegenbeispiel schnell zeigt.
Sei a=2, [mm] b_1=3 [/mm] und [mm] b_2=4. [/mm]
Es gilt ggT(2;3;4)=1, obwohl der [mm] ggT(a;b_2) [/mm] NICHT 1 ist.
Der genau-dann-wenn-Pfeil hat also überhaupt keine Berechtigung.
Gruß Abakus

>  Beweis:
> [mm](\Leftarrow):[/mm] [mm]\\[/mm]
>  [mm]ggT(a,b_i) = 1 \Rightarrow 1 = \prod_i(a\alpha_i + b_i \beta _ i ) = (a\alpha_1 + b_1\beta_1)(a\alpha_2 + b_2 \beta_2) \ldots (a\alpha_k + b_k\beta_k) = ax + \prod_{i=1}^k b_i\beta _i \Rightarrow ggT(a,\prod b_i) =1 [/mm]
> [mm]\\[/mm]
>  [mm](\Rightarrow):[/mm] [mm]\\[/mm]
>  Es gelte [mm]|d| \neq 1[/mm] und [mm]d|a[/mm]. [mm]\\[/mm]
>  [mm]\Rightarrow d \nmid \prod_{i=1}^{k} b_i \Rightarrow d\nmid b_i \forall i\in\{1,\ldots,k\}. \Rightarrow ggT(a,b_i) = 1.[/mm]
>
> Stimmt das so?
> Mein Problem: Die letzte Schlussfolgerung könnte sicher
> noch weiter zerlegt werden, doch leuchtet mir dies intuitiv
> schon ein, sodass ich keinen weiteren für nötig halte
> bzw. auch keinen solchen finde,
> Könnte mir da jemand weiterhelfen?  


Bezug
                
Bezug
allgemeiner ggT: Missverständnis
Status: (Frage) beantwortet Status 
Datum: 21:56 Di 19.04.2011
Autor: clemenum

Hallo Abakus!

Entschuldige bitte meine Missverständliche Schreibweise:
Es geht jeweils um den ggT ZWEIER Zahlen und nicht etwa von k+1 Zahlen. Bei der linken Seite handedlt es sich um das Produkt [mm] $b_1\cdots b_k.$ [/mm]

Bezug
                        
Bezug
allgemeiner ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Di 19.04.2011
Autor: felixf

Moin!

> Entschuldige bitte meine Missverständliche Schreibweise:
> Es geht jeweils um den ggT ZWEIER Zahlen und nicht etwa von
> k+1 Zahlen. Bei der linken Seite handedlt es sich um das
> Produkt [mm]b_1\cdots b_k.[/mm]  

Deine Rueckrichung stimmt so. Der letzte Schritt ist ja einfach die Definition des ggT.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]