www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - allgemeine kubische Gleichung
allgemeine kubische Gleichung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allgemeine kubische Gleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:01 Mi 20.04.2011
Autor: ella87

Aufgabe
Bestimmung der Anzahl der Lösungen einer kübischen Gleichung der Form
[mm] x^3 +px+q[/mm] in Abhängigkeit von der Diskriminante D.

Ich versuche grade das hier nachzu vollziehen:
http://www.montgelas-gymnasium.de/mathe/kubfa/leitkubgleich.html

und verstehe nicht, wie die bei D=0 auf die Lösungen kommen!

[mm]\wurzel[3]{-4q}[/mm] verstehe ich, das bekommt man aus der Cardanischen Formel.
Und dann ist die eine Lösung doch [mm]y_1 =0{[/mm], weil p=q=0.
Aber wie kommt man denn an die 2. Lösung??? Warum ist die denn nicht einfach [mm]\wurzel[3]{-4q}[/mm]???

Kann mir jemand weiter helfen??

        
Bezug
allgemeine kubische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 20.04.2011
Autor: leduart

Hallo
deine Frage versteh ich nicht ganz:
für D=0 gibts 2 Fälle.
1.Fall p=q=0 man hat [mm] y^3=0 [/mm] also nur die lösung y=0
2. Fall [mm] (q/2)^2=-(p/3)^3 [/mm] dann hast du die eine Lösung $ [mm] \wurzel[3]{-4q} [/mm] $
und eine zweite (doppelte) nullstelle [mm] y=\wurzel[3]{p/2} [/mm]
und bei p=q=0  gibts doch NUR die Lösung 0 [mm] (\wurzel[3]{-4q}=0 [/mm] wenn q=0)
Gruss leduart


Bezug
                
Bezug
allgemeine kubische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Mi 20.04.2011
Autor: ella87


> Hallo
>  deine Frage versteh ich nicht ganz:
>   für D=0 gibts 2 Fälle.
> 1.Fall p=q=0 man hat [mm]y^3=0[/mm] also nur die lösung y=0
>  2. Fall [mm](q/2)^2=-(p/3)^3[/mm] dann hast du die eine Lösung
> [mm]\wurzel[3]{-4q}[/mm]
>  und eine zweite (doppelte) nullstelle [mm]y=\wurzel[3]{p/2}[/mm]


aber da steht [mm]y=\wurzel[3]{q/2}[/mm]

DAS versteh ich nicht.
Also ein Tippfehler?

Bezug
                        
Bezug
allgemeine kubische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Do 21.04.2011
Autor: leduart

Hallo
sorry, ich hatte mich verschrieben. die 2 te Lösung ist y=$ [mm] y=\wurzel[3]{q/2} [/mm] $
benutze [mm] p=-3\wurzel[3]{(q/2)^2} [/mm] und setz [mm] y=\wurzel[3]{q/2} [/mm] in [mm] y^2+py+q [/mm] ein, und du siehst es kommt 0 raus.
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]