www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - allgemein
allgemein < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allgemein: additionstheoremen
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 10.09.2011
Autor: constellation_nt1

Aufgabe
wir solle die identotät bestätigen von :

sin(x)= [mm] \bruch{2*tan(\bruch{x}{2})}{1+tan^2(\bruch{x}{2})} [/mm]

hi an alle,

[mm] 2*\bruch{sin(\bruch{x}{2})}{cos(\bruch{x}{2})(1+\bruch{sin^2(\bruch{x}{2})}{cos^2(\bruch{x}{2})})} [/mm] =2* [mm] \bruch{sin(\bruch{x}{2})*cos(\bruch{x}{2})}{cos^2\bruch{x}{2}+sin^2\bruch{x}{2}} [/mm]

meine frag? wie kommt das [mm] cos(\bruch{x}{2}) [/mm] von Nennen in den Zähler ?
das [mm] con^2\bruch{x}{2}+sin^2\bruch{x}{2}= [/mm] 1  ist weiß ich ....

wenn ich es nachrechne bekomme ich immer [mm] 2*\bruch{sin(\bruch{x}{2})}{cos(\bruch{x}{2})} [/mm]

        
Bezug
allgemein: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Sa 10.09.2011
Autor: fencheltee


> wir solle die identotät bestätigen von :
>
> sin(x)= [mm]\bruch{2*tan(\bruch{x}{2})}{1+tan^2(\bruch{x}{2})}[/mm]
>  hi an alle,
>
> [mm]2*\bruch{sin(\bruch{x}{2})}{cos(\bruch{x}{2})(1+\bruch{sin^2(\bruch{x}{2})}{cos^2(\bruch{x}{2})})}[/mm]
> =2*
> [mm]\bruch{sin(\bruch{x}{2})*cos(\bruch{x}{2})}{cos^2\bruch{x}{2}+sin^2\bruch{x}{2}}[/mm]
>  
> meine frag? wie kommt das [mm]cos(\bruch{x}{2})[/mm] von Nennen in
> den Zähler ?

hallo,
im zähler und nenner wurde jeweils mit cos(x/2) multipliziert (erweitert)

> das [mm]con^2\bruch{x}{2}+sin^2\bruch{x}{2}=[/mm] 1  ist weiß ich
> ....
>  
> wenn ich es nachrechne bekomme ich immer
> [mm]2*\bruch{sin(\bruch{x}{2})}{cos(\bruch{x}{2})}[/mm]  

gruß tee

Bezug
                
Bezug
allgemein: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Sa 10.09.2011
Autor: constellation_nt1

hi tee


[mm] 2\cdot{}\bruch{sin(\bruch{x}{2})}{cos(\bruch{x}{2})(1+\bruch{sin^2(\bruch{x}{2})}{cos^2(\bruch{x}{2})})} [/mm]   >>>>

2* [mm] \bruch{sin(\bruch{x}{2})\cdot{}cos(\bruch{x}{2})}{cos^2\bruch{x}{2}+sin^2\bruch{x}{2}} [/mm]

meine frage bezog sich hier drauf ... wieso wanderr das cos(x/2) in den zähler ??
einer erweiterung würde da nichts bringen oder ?




thx niso

Bezug
                        
Bezug
allgemein: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Sa 10.09.2011
Autor: fencheltee


> hi tee
>  
>
> [mm]2\cdot{}\bruch{sin(\bruch{x}{2})}{cos(\bruch{x}{2})(1+\bruch{sin^2(\bruch{x}{2})}{cos^2(\bruch{x}{2})})}[/mm]
>   >>>>
>  
> 2*
> [mm]\bruch{sin(\bruch{x}{2})\cdot{}cos(\bruch{x}{2})}{cos^2\bruch{x}{2}+sin^2\bruch{x}{2}}[/mm]
>  
> meine frage bezog sich hier drauf ... wieso wanderr das
> cos(x/2) in den zähler ??

es wandert nicht. rechne doch einfach mal nach mit der erweiterung ;)

> einer erweiterung würde da nichts bringen oder ?
>
>
>
>
> thx niso  


Bezug
                                
Bezug
allgemein: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Sa 10.09.2011
Autor: constellation_nt1

haah ja so verschachtel ... muhah ok danke dir TEE :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]