www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - affiner Unterraum
affiner Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affiner Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 29.11.2006
Autor: kleiner-

Aufgabe
Zeigen Sie , dass
U:={x  [mm] \in \IR^5| \summe_{k=1}^{5} x_{k} [/mm] = 1 } [mm] \subset \IR^5 [/mm]
ein affiner Unterraum ist und bestimmen Sie dessen Dimension

Hallo,

Die Def. eines affinen UR ist: Eine Teilmenge U eines VR [mm] \IR^5 [/mm] heist ein affiner UR, falls es ein x [mm] \in \IR^5 [/mm] gibt und einen Untervektorraum
W [mm] \subset \IR^5 [/mm] gibt, so dass
U= x+ W := { u [mm] \in \IR^5 [/mm] : es gibt ein w [mm] \in [/mm] W mit u=x + w}

wenn das richtig sein sollte, wie mach ich dann weiter

schon mal im voraus danke

        
Bezug
affiner Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 29.11.2006
Autor: DaMenge

Hi,

setze doch einfach mal [mm] $x=\vektor{1\\0\\0\\0\\0}$ [/mm] und $W:={x  $ [mm] \in \IR^5| \summe_{k=1}^{5} x_{k} [/mm] $ = 0 }$

jetzt musst du nur zeigen, dass wirklich U=x+W gilt und dass W ein UVR ist, für letzteres siehe mal HIER...

viele Grüße
DaMenge

Bezug
                
Bezug
affiner Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 29.11.2006
Autor: kleiner-

hallo,
der beweis zu U=x+W

für ein beliebiges x' = x+w'
U [mm] \subset [/mm] x' + W:  u [mm] \in [/mm] U [mm] \Rightarrow [/mm] u=x+w mit w in W
[mm] \Rightarrow [/mm] u=x'+(w-w')
[mm] \Rightarrow [/mm] u [mm] \in [/mm] x' + W
x'+W [mm] \subset [/mm] U: u=x'+w [mm] \in [/mm] x'+W [mm] \Rightarrow [/mm] u=x+(w+w') [mm] \in [/mm] x +W

stimmt das????

läuft das mit dem beweis, das W ein UVR ist, nach dem gleichen schema ab wie der link auf der anderen seit es zeigt???


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]