www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - affine Hülle = lineare Hülle
affine Hülle = lineare Hülle < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Hülle = lineare Hülle: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:31 So 10.10.2010
Autor: csak1162

Aufgabe
Zeigen Sie, dass Aff(Y) =  _{R}<Y> genau dann wenn 0 [mm] \in [/mm] Aff(Y)
wobei  _{R}<Y> die lineare Hülle von Y bezeichnet.

Beweise, dass für alle x,y [mm] \in [/mm] Aff(Y)  gilt: x + _{R}<Y - y>.



_{R}soll ein unten  gestelltes R sein, weiß nicht wie das geht!!


die erste Aufgabe ist mir anschaulich völlig klar, aber ich weiß nicht wie ich den Beweis ansetzen soll, muss!!

bei der zweiten teilafugabe bin ich noch beim überlegen was das genau bedeutet



vielen dank
lg

        
Bezug
affine Hülle = lineare Hülle: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 10.10.2010
Autor: angela.h.b.


> Zeigen Sie, dass Aff(Y) =  _{R}<Y><y> genau dann wenn 0 [mm]\in[/mm]  Aff(Y)
>  wobei  _{R}<Y><y> die lineare Hülle von Y bezeichnet.

>  
> Beweise, dass für alle x,y [mm]\in[/mm] Aff(Y)  gilt: x + _{R}<Y-y>.
>  
>
> _{R}<y>soll ein unten  gestelltes R sein, weiß nicht wie das
> geht!!
>  
>
> die erste Aufgabe ist mir anschaulich völlig klar, aber
> ich weiß nicht wie ich den Beweis ansetzen soll, muss!!

Hallo,

zunächst wäre es gut, würdest Du mal die Definitionen von Aff(Y) und <Y> aufschreiben, denn das ist ja das Material, mit welchem zu arbeiten sein wird.

Prinzipiell sind für den Beweis zwei Richtungen zu zeigen, auch die solltest Du notieren.

Das wären dann auch die von Dir erwarteten Lösungsansätze.

>  
> bei der zweiten teilafugabe bin ich noch beim überlegen
> was das genau bedeutet

Irgendwie bedeutet es so, wie es dasteht, gar nichts...
Könnte es sein, daß eine Gleichheit zu zeigen ist, welche Du nicht notiert hast? Etwa ...=Aff(Y)?
Das wäre dann die Gleichheit zweier Mengen, wofür beide Teilmengenbeziehungen nachzuweisen sind.

Wie ist denn Y-y definiert? Das müßtest Du Dir vor dem eginn des Beweises unedingt klarmachen.

Gruß v. Angela

P.S.: Das tiefgestellte R will bei mir heute auch nicht, und ich kapiere nicht, weshalb.


</y></y></y>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]