www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Äquivalenzrelation die 2te
Äquivalenzrelation die 2te < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation die 2te: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Fr 23.11.2007
Autor: mathlooser

Aufgabe
Zeigen Sie: V/ [mm] \sim [/mm] = V/U := {v + U | v [mm] \in [/mm] V }, wobei v + U := {v + u | u [mm] \in [/mm] U}.

Hallo,

zunächst einmal zur notation: V/U bedeutet doch V ohne U oder?

zum verständnis: Ich soll zeigen das V ohne [mm] "\sim, [/mm] also die äquivalenzrelation" dasslbe aussagt wie V ohne U, wobei das wiederrum definiert ist als v + U? Wenn ich also ein v [mm] \in [/mm] V mit U addiere gilt die äquivalenz in V nicht mehr?

Und wie zum T. zeig ich das?

fragen über fragen...

gruss

mathlooser

        
Bezug
Äquivalenzrelation die 2te: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Fr 23.11.2007
Autor: piet.t

Hallo,

> Zeigen Sie: V/ [mm]\sim[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= V/U := {v + U | v [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

V }, wobei v +

> U := {v + u | u [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

U}.

>  
> zunächst einmal zur notation: V/U bedeutet doch V ohne U
> oder?

Nein, tut es nicht, denn dann wäre der Schrästrich anders herum - also $\setminus$, hier steht aber  ein /.
Für eine Äquivalenzrelation \sim bezeichnet V/\sim die Menge aller Äquivalenzklassen in die V unter \sim zerfällt.
Im vorliegenden Fall soll für zwei Vektoren v und w aus V gelten, dass $ v\sim w  \gdw v -w \in U$ (aber das müsste auch irgendwo in der Aufgabe stehen, was Du uns leider vorenthalten hast...).
Und Du hast jetzt die Aufgabe zu zeigen, dass  die Menge dieser Äquivalenzklassen das gleiche ist wie die Menge aller (in ermangelung eines besseren Wortes) "Parallelenscharen" v+U.
D.h. am besten zeigst Du
1.) dass alle Vektoren in v+U bezüglich \sim äquivalent sind
und umgekehrt
2.)wenn zwei Vektoren v und w äquivalent bezüglich \sim sind liegen sie im gleichen v+U.

Ist es etwas klarer geworden??

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]