www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Äquivalenzrelation
Äquivalenzrelation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Mi 27.01.2010
Autor: NightmareVirus

Aufgabe
1.)$R := M [mm] \times [/mm] M$ ist eine Äquivalenzrelation auf $M$. [mm] $\emptyset \subset [/mm] M [mm] \times [/mm] M$ ist symmetrisch, transitiv, aber nicht reflexiv .


2.)Sei $G : M [mm] \to [/mm] N$ eine Abbildung ($G$ wie Gesichtspunkt). Dann ist [mm] $\sim_G \subseteq [/mm] M [mm] \times [/mm] M$ definiert durch $m [mm] \sim_G [/mm] m'$ genau dann, wenn $G(m) = G(m'), eine Äquivalenzrelation.
Die Äquivalenzrelation [mm] $\sim_G$ [/mm] heisst Bildgleichheit bezüglich G.
(z.b. $G: [mm] \mathbb{R}^2 \to \mathbb{R} [/mm] : (x,y) [mm] \mapsto [/mm] x-y$
oder $G: [mm] \mathbb{R}^2 \to \mathbb{R} [/mm] : (x,y) [mm] \mapsto x^2+y^2$) [/mm]


3.) Sei $M$ eine Menge und $f: M [mm] \to [/mm] M$ eine Abbildung von $M$ in sich. [mm] $\sim$ [/mm] ist eine Äquivalenzrelation auf $M$ definiert durch $m [mm] \sim [/mm] n$ für $m,n [mm] \in [/mm] M$, falls natürlichen Zahlen $a,b [mm] \in \mathbb{N}$ [/mm] existieren mit [mm] $f^a(m) [/mm] = [mm] f^b(n)$. [/mm]
Diese Äquivalenzrelation teilt die Menge $M$ in Teilmengen auf, die durch $f$ wieder in sich abgebildet werden, man könnte von Komponenten der Abbildung sprechen.

Hi,
obige 3 Aussagen bereiten mir Kopfzerbrechen. Ich lerne gerade für meine Zwischenprüfung LAI / LA II und arbeite daher das gehasste Skript durch.
(ich sage nur: RWTH Professor P.) ;)

Klar ist: Eine Relation $R$ heisst Äquivalenzrelation wenn sie reflexiv, symmetrisch und transitiv ist.

zu 1.) warum soll das kreuzprodukt nicht reflexiv sein? und warum, sollte es tatsächlich nicht reflexiv sein, liegt dann eine Äquivalenzrelation vor?

zu 2.) Kann das bitte jemand anschaulich erklären? Was soll die Bildgleichheit bzgl. G sein?

zu 3.) ???

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mi 27.01.2010
Autor: statler

Hallo!

> 1.)[mm]R := M \times M[/mm] ist eine Äquivalenzrelation auf [mm]M[/mm].
> [mm]\emptyset \subset M \times M[/mm] ist symmetrisch, transitiv,
> aber nicht reflexiv .
>  
>
> 2.)Sei $G : M [mm]\to[/mm] N$ eine Abbildung ($G$ wie
> Gesichtspunkt). Dann ist [mm]$\sim_G \subseteq[/mm] M [mm]\times[/mm] M$
> definiert durch $m [mm]\sim_G[/mm] m'$ genau dann, wenn $G(m) =
> G(m'), eine Äquivalenzrelation.
>  Die Äquivalenzrelation [mm]\sim_G[/mm] heisst Bildgleichheit
> bezüglich G.
>  (z.b. [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x-y[/mm]
>  
> oder [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x^2+y^2[/mm])
>  
>
> 3.) Sei [mm]M[/mm] eine Menge und [mm]f: M \to M[/mm] eine Abbildung von [mm]M[/mm] in
> sich. [mm]\sim[/mm] ist eine Äquivalenzrelation auf [mm]M[/mm] definiert
> durch [mm]m \sim n[/mm] für [mm]m,n \in M[/mm], falls natürlichen Zahlen
> [mm]a,b \in \mathbb{N}[/mm] existieren mit [mm]f^a(m) = f^b(n)[/mm].
>  Diese
> Äquivalenzrelation teilt die Menge [mm]M[/mm] in Teilmengen auf,
> die durch [mm]f[/mm] wieder in sich abgebildet werden, man könnte
> von Komponenten der Abbildung sprechen.

>  obige 3 Aussagen bereiten mir Kopfzerbrechen. Ich lerne
> gerade für meine Zwischenprüfung LAI / LA II und arbeite
> daher das gehasste Skript durch.
>  (ich sage nur: RWTH Professor P.) ;)

Der Mensch soll nicht hassen, sondern lieben.

> Klar ist: Eine Relation [mm]R[/mm] heisst Äquivalenzrelation wenn
> sie reflexiv, symmetrisch und transitiv ist.
>  
> zu 1.) warum soll das kreuzprodukt nicht reflexiv sein? und
> warum, sollte es tatsächlich nicht reflexiv sein, liegt
> dann eine Äquivalenzrelation vor?

Wie heißt es bei Loriot? Sie müssen schon gaaaanz genau hinschauen. Das Kreuzprodukt soll eine Ä-Rel., also auch reflexiv, sein. Die leere Menge ist nicht reflexiv! Es sei denn, M ist leer.

> zu 2.) Kann das bitte jemand anschaulich erklären? Was
> soll die Bildgleichheit bzgl. G sein?

In der Urbildmenge sollen 2 Elemente äquivalent sein, wenn sie das gleiche Bild in N haben. Vielleicht sollte man besser sagen: dasselbe Bild.

> zu 3.) ???

Daran kann man noch mal alles üben, was zu den Ä-Relationen gehört, also überlasse ich die Ausführung des Beweises von r, s und t, die Beschreibung dieser ominösen Mengen (Was bietet sich da an?) und den Nachweis, daß sie auf sich abgebildet werden, vorerst dir. Irgend ein Ansatz sollte schon kommen.

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 03:06 Mo 08.02.2010
Autor: felixf

Moin!

Dieter hat hier ja schon was zu geschrieben.

> 2.)Sei $G : M [mm]\to[/mm] N$ eine Abbildung ($G$ wie
> Gesichtspunkt). Dann ist [mm]$\sim_G \subseteq[/mm] M [mm]\times[/mm] M$
> definiert durch $m [mm]\sim_G[/mm] m'$ genau dann, wenn $G(m) =
> G(m'), eine Äquivalenzrelation.
>  Die Äquivalenzrelation [mm]\sim_G[/mm] heisst Bildgleichheit
> bezüglich G.
>  (z.b. [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x-y[/mm]
> oder [mm]G: \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x^2+y^2[/mm])

Hier hast du doch zwei Beispiele! Schau dir das ganze doch mal in dem Fall an!

Nehmen wir die zweite Funktion, welche $(x, y)$ auf [mm] $x^2 [/mm] + [mm] y^2$ [/mm] abbildet. (Merke: das ist die euklidische Norm des Vektors $(x, y)$ im [mm] $\IR^2$, [/mm] jedoch quadriert.)

Wann haben zwei Punkte $(x, y)$ und $(x', y')$ das selbe Bild? Also wann gilt $G(x, y) = G(x', y')$? Oder anders gesagt, wann gilt $(x, y) [mm] \sim_G [/mm] (x', y')$?

Wegen meiner Bemerkung ist dies genau dann der Fall, wenn die Vektoren $(x, y)$ und $(x', y')$ die gleiche Laenge haben! Daraus folgt: die Aequivalenzklasse von $(x, y)$ bzgl. [mm] $\sim_G$ [/mm] ist die Menge aller Vektoren im [mm] $\IR^2$, [/mm] welche die gleiche Laenge wie $(x, y)$ haben -- also ein Kreis um den Ursprung mit Radius [mm] $\|(x, y)\|_2$. [/mm]

Hilft dir das weiter?


Nun zum anderen Beispiel, wo $G(x, y) = x - y$ ist. Hier haben zwei Vektoren $(x, y)$ und $(x', y')$ das gleiche Bild, wenn $x - y = x' - y'$ ist, also wenn ihre Differenzen gleich sind.

Damit ist die Aequivalenzklasse von $(x, y)$ mit $x - y =: r$ gerade die Gerade im [mm] $\IR^2$, [/mm] welche aus Punkten $(x', x' - r)$, $x' [mm] \in \IR$ [/mm] besteht!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]