www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Äquivalenzrelation
Äquivalenzrelation < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Idee + Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:36 Di 23.01.2007
Autor: Engel-auf-Wolke

Aufgabe
Es sei R Integritätsbereich. Wir definieren: a ist assoziiert zu b genau dann, wenn es eine Einheit e [mm] \in [/mm] R mit a=eb gibt.
z.z.: Die Relation a ist assoziiert zu b ist eine Äquivalenzrelation.

1. Eine Relation ist eine Äquivalenzrelation wenn Refelxivität (a~a), Symmetrie (a~b [mm] \Rightarrow [/mm] b~a) und Transitivität (a~b [mm] \wedge [/mm] b~c [mm] \Rightarrow [/mm] a~c) gelten.

Reflexivität:
(a~a) Also a ist assoziiert zu a genau dann, wenn es eine Einhiet e [mm] \in [/mm] R gibt mit a=ea. Wenn e=1, dann ist a=a und somit ist a assoziiert zu a.
Richtig?

Jetzt wird es schwieriger!
Symmetrie:
(b~a [mm] \Rightarrow [/mm] b~a) Also aus a assoziiert zu b genau dann, wenn es eine Einheit e [mm] \in [/mm] R gibt mit a=eb [mm] \Rightarrow [/mm] b assoziiert zu a genau, dann wenn es eine Einheit e \ in R gibt mit b=ea.
Kann man das so schreiben? a=eb [mm] \Rightarrow [/mm] b=ea.
Wenn ja, wie kann man klug umformen?, so dass a=eb [mm] \Rightarrow [/mm] ... [mm] \Rightarrow [/mm] b=ea.

Transitivität:
(a~b [mm] \wedge [/mm] b~c [mm] \Rightarrow [/mm] a~c) Also aus a assoziiert zu b genau dann, wenn es eine Einheit e [mm] \in [/mm] R gibt mit a=eb und b assoziiert zu c genau dann, wenn es eine Eihnheit e [mm] \in [/mm] R gibt mit b=ec [mm] \Rightarrow [/mm] a assoziiert zu c genau dann, wenn es eine Einheit e [mm] \in [/mm] R gibt mit a=ec.
a=eb [mm] \wedge [/mm] b=ec [mm] \Rightarrow [/mm] a=ec
Hier würde ich mich auch über einen Tipp freuen.

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Di 23.01.2007
Autor: mathiash

Hallo und guten Tag !

> Es sei R Integritätsbereich. Wir definieren: a ist
> assoziiert zu b genau dann, wenn es eine Einheit e [mm]\in[/mm] R
> mit a=eb gibt.
>  z.z.: Die Relation a ist assoziiert zu b ist eine
> Äquivalenzrelation.
>  1. Eine Relation ist eine Äquivalenzrelation wenn
> Refelxivität (a~a), Symmetrie (a~b [mm]\Rightarrow[/mm] b~a) und
> Transitivität (a~b [mm]\wedge[/mm] b~c [mm]\Rightarrow[/mm] a~c) gelten.
>  
> Reflexivität:
>  (a~a) Also a ist assoziiert zu a genau dann, wenn es eine
> Einhiet e [mm]\in[/mm] R gibt mit a=ea. Wenn e=1, dann ist a=a und
> somit ist a assoziiert zu a.
>  Richtig?
>  

Ja.

> Jetzt wird es schwieriger!
>  Symmetrie:
>  (b~a [mm]\Rightarrow[/mm] b~a) Also aus a assoziiert zu b genau
> dann, wenn es eine Einheit e [mm]\in[/mm] R gibt mit a=eb
> [mm]\Rightarrow[/mm] b assoziiert zu a genau, dann wenn es eine
> Einheit e \ in R gibt mit b=ea.
>  Kann man das so schreiben? a=eb [mm]\Rightarrow[/mm] b=ea.
>  Wenn ja, wie kann man klug umformen?, so dass a=eb
> [mm]\Rightarrow[/mm] ... [mm]\Rightarrow[/mm] b=ea.
>  

Nun, aus a=eb und  e'e=1 (solches e' gibt es ja, und dann gilt im übrigen auch ee'=1)

folgt   e'a [mm] =e'(eb)=(e'e)b=1\cdot [/mm] b =b,   gelle ?

> Transitivität:
>  (a~b [mm]\wedge[/mm] b~c [mm]\Rightarrow[/mm] a~c) Also aus a assoziiert zu
> b genau dann, wenn es eine Einheit e [mm]\in[/mm] R gibt mit a=eb
> und b assoziiert zu c genau dann, wenn es eine Eihnheit e
> [mm]\in[/mm] R gibt mit b=ec [mm]\Rightarrow[/mm] a assoziiert zu c genau
> dann, wenn es eine Einheit e [mm]\in[/mm] R gibt mit a=ec.
>  a=eb [mm]\wedge[/mm] b=ec [mm]\Rightarrow[/mm] a=ec
>  Hier würde ich mich auch über einen Tipp freuen.

>

Das kann ja ein anderes e sein, nicht wahr ? gelte also

[mm] a=eb,\:\: [/mm] b=fc  mit ee'=e'e=ff'=f'f=1, dann ist

a=eb=e(fc)=(ef)c

und zu zeigen ist, dass ef Einheit ist. Dem ist so wegen    [mm] (f'e')\cdot [/mm] (ef) =1, in Ordnung ?

Gruss,

Mathias
  

> Vielen Dank!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Äquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Di 23.01.2007
Autor: Engel-auf-Wolke

Danke!

Liebe Grüße!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]