www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Äquivalenzprinzip
Äquivalenzprinzip < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Fr 14.11.2008
Autor: hasso

Halloo,


Ich hab eine Frage zu Aufgabe 1 b. Ich Versteh da nicht wie man den vorschüssigen einheitlichen Zinssatz ermittelt und wie den Nachschüssigen. Habs versucht einen einheitlichen Zinssatz zu ermitteln weiß aber nicht so genau ob es sich um ein vorschüssigen oder Nachschüssigen handelt …

Aufgabe 1:
Huber legt man 07.02.10 einen Betrag in Höhe von 12.000€ auf einen Bankkonto an. Die Bank kennt Hubers  Vorliebe für Ausgefallene Zinsvereinbarungen und bietet daher folgende (linear) Verzinsungsmodalitäten an:
*Zinssatz bis incl. 22.06.10: 8% p.a.;
*Zinssatz ab 23.06.10 bis Jahresende: 10% p.a.;
*Am Jahresende soll außerdem ein Treue Bonus in Höhe von 250€ auf Huberskonto eingehen.


a) Mann ermittle den Kontostand zu Jahresende(vorher kein Zuschlagstermin)

b) Welchen einheitlichen b1) nachschüssigen b2) vorschüssigen Jahreszinssatz hätte ihm eine andere Bank bieten müssen, um – ausgehend vom gleichen Anfangskapital – ebenfalls den unter a ermittelten Kontostand am Jahresende erreichen zu können


a) 8% a 135 Tage, 10% a 187 Tage + Jahresende Bonus 250
12.000 ( 1 + 0,08 * [mm] \bruch{135}{360} [/mm] ) = 12.360,00
12.360 ( 1 + 0,10 * [mm] \bruch{187}{360} [/mm] )= 12.730,80 + 250 Bonus = 12.980,8

b) Gleichung aufstellen:
12.000 (1 + i * [mm] \bruch{322}{360} [/mm] ) = 12.980,8
i= 9,13 % p.a.


Danke…
Bestee Gruß hasso






        
Bezug
Äquivalenzprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 05:53 Sa 15.11.2008
Autor: Josef

Hallo hasso,

> Ich hab eine Frage zu Aufgabe 1 b. Ich Versteh da nicht wie
> man den vorschüssigen einheitlichen Zinssatz ermittelt und
> wie den Nachschüssigen. Habs versucht einen einheitlichen
> Zinssatz zu ermitteln weiß aber nicht so genau ob es sich
> um ein vorschüssigen oder Nachschüssigen handelt …
>  
> Aufgabe 1:
> Huber legt man 07.02.10 einen Betrag in Höhe von 12.000€
> auf einen Bankkonto an. Die Bank kennt Hubers  Vorliebe für
> Ausgefallene Zinsvereinbarungen und bietet daher folgende
> (linear) Verzinsungsmodalitäten an:
>  *Zinssatz bis incl. 22.06.10: 8% p.a.;
> *Zinssatz ab 23.06.10 bis Jahresende: 10% p.a.;
> *Am Jahresende soll außerdem ein Treue Bonus in Höhe von
> 250€ auf Huberskonto eingehen.
>  
>
> a) Mann ermittle den Kontostand zu Jahresende(vorher kein
> Zuschlagstermin)
>
> b) Welchen einheitlichen b1) nachschüssigen b2)
> vorschüssigen Jahreszinssatz hätte ihm eine andere Bank
> bieten müssen, um – ausgehend vom gleichen Anfangskapital –
> ebenfalls den unter a ermittelten Kontostand am Jahresende
> erreichen zu können
>  
>
> a) 8% a 135 Tage,


[ok]

> 10% a 187 Tage

aus 188 Tage


> + Jahresende Bonus 250

[ok]



>  12.000 ( 1 + 0,08 * [mm]\bruch{135}{360}[/mm] ) = 12.360,00

[ok]

>  12.360 ( 1 + 0,10 * [mm]\bruch{187}{360}[/mm] )= 12.730,80 + 250
> Bonus = 12.980,8


[notok]

beachte: keine Zinseszinsrechnung!


Der Ansatz lautet:

[mm] 12.000*(1+0,08*\bruch{135}{360} [/mm] + [mm] 0,10*\bruch{188}{360}) [/mm] + 250 = 13.236,67


>  
> b) Gleichung aufstellen:
>  12.000 (1 + i * [mm]\bruch{322}{360}[/mm] ) = 12.980,8
> i= 9,13 % p.a.

[notok]


[mm] b_1 [/mm] = [mm] 12.000*(1+i*\bruch{323}{360}) [/mm] = 13.236,67


[mm] b_2 [/mm] = 12.000 = [mm] 13.236,67*(1-i_v *\bruch{323}{360}) [/mm]




Viele Grüße
Josef


Bezug
                
Bezug
Äquivalenzprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Sa 15.11.2008
Autor: hasso

Hallo Josef,

>  
> >  12.360 ( 1 + 0,10 * [mm]\bruch{187}{360}[/mm] )= 12.730,80 + 250

> > Bonus = 12.980,8
>  
>
> [notok]
>  
> beachte: keine Zinseszinsrechnung!

okii stimmt.

> Der Ansatz lautet:
>  
> [mm]12.000*(1+0,08*\bruch{135}{360}[/mm] + [mm]0,10*\bruch{188}{360})[/mm] +
> 250 = 13.236,67
>  
>
>
> [mm]b_1[/mm] = [mm]12.000*(1+i*\bruch{323}{360})[/mm] = 13.236,67

b1 = p = 11,48 <=> i = 0,1148




> [mm]b_2[/mm] = 12.000 = [mm]13.236,67*(1-i_v *\bruch{323}{360})[/mm]


b2 = p= 10,41 <=> i = 0,1041

b2. da wurde ja  mit -iv gerechnet, sprich welcher Zinsatz würde Kn auf Ko sein (Diskontieren)..Könntest du mir noch bitte sagen warum bei der Vorschüssigen Rechnung man Diskontiert ?

Ich weiß nur das die vorschüsige Rechnung stattfindet wenn eine Zahlung am Anfang des Monats erfolgt und eine Nachschüssige am Ende erfolgt.


Danke nochmals...!
Lieben gruß hassoo

Bezug
                        
Bezug
Äquivalenzprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Sa 15.11.2008
Autor: Josef

Hallo hasso,

> >
> > [mm]b_1[/mm] = [mm]12.000*(1+i*\bruch{323}{360})[/mm] = 13.236,67
>  
> b1 = p = 11,48 <=> i = 0,1148
>  


[ok]


>
> > [mm]b_2[/mm] = 12.000 = [mm]13.236,67*(1-i_v *\bruch{323}{360})[/mm]
>  
>
> b2 = p= 10,41 <=> i = 0,1041


[ok]



>  
> b2. da wurde ja  mit -iv gerechnet, sprich welcher Zinsatz
> würde Kn auf Ko sein (Diskontieren)..

[ok]


> Könntest du mir noch
> bitte sagen warum bei der Vorschüssigen Rechnung man
> Diskontiert ?
>  

Ein nachschüssiger Zinssatz ist als das Verhältnis des jährlichen Zinsbetrags zum Kapital am Beginn der Zinsperiode definiert.

Dagegen setz man bei vorschüssigem Zinssatz den jährlichen Zinsbetrag in Beziehung zum Kapital am Ende der Zinsperiode.

Ein einfaches Beispiel mag die unterschiedliche Art der Vorgehensweise im Verhältnis zur vertrauten nachschüssigen Methode deutlicher machen. Gibt jemand Kredit über 100 € für ein Jahr unter der Bedingung vorschüssiger Zinsen in Höhe von 10 % p.a., so überlässt er dem Kapitalnehmer 90 € und verpflichtet ihn zur Rückzahlung von 100 € in einem Jahr. Die Zinsen von 0,10 *100 = 10 € zahlt der Kapitalnehmer damit am Anfang der Zinsperiode (vorschüssig).

Diskontierung:

[mm] \bruch{90}{1-0,10} [/mm] = 100


> Ich weiß nur das die vorschüsige Rechnung stattfindet wenn
> eine Zahlung am Anfang des Monats erfolgt und eine
> Nachschüssige am Ende erfolgt.
>  

[ok]


Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]