www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Äquivalenzklassen in Boolschen
Äquivalenzklassen in Boolschen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen in Boolschen: Richtig?
Status: (Frage) überfällig Status 
Datum: 21:43 Sa 24.01.2015
Autor: kreis

Aufgabe
Wie Sie wissen, ist Semantische Äquivalenz eine Äquivalenzrelation in der Menge
der Booleschen Ausdrücke. Beweisen Sie, dass die zugehörigen Äquivalenzklassen alle unendliche Kardinalität haben.

Hallo,
verstehe ich die Frage richtig, dass hier als Relation zwischen zwei elementen sowas wie (a∧a) ≡ a gemeint ist.
Nun weiss man ja, dass es unendlich viele Therme gibt die ein und die selbe Funktion representieren.
Wie wir wissen ist zum Beispiel t ≡t ∨t ≡ t ∨t ∨t ≡ . . .. Alle diese syntaktisch
verschiedenen Booleschen Terme haben dieselbe semantische Interpretation.
Nun  kann man ja schon an der Äquivalenzklasse von t, wegen der transitivität sehen, dass diese unendlich groß ist.
Ist das so richtig oder bin ich auf dem Holzweg?
Danke für jede hilfe! :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzklassen in Boolschen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 28.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]