www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Äquivalenzklassen
Äquivalenzklassen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen: Probleme mit Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 17:27 Fr 20.10.2006
Autor: Helmut84

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo alle zusammen!
Ich habe da eine Aufgabe, mit der ich nicht so ganz warm werde ;)
Also ich habe eine Zerlegung M1={5}, M2={3,4}, M3={1,2} der Menge M={1,2,3,4,5} in Äquivalenzklassen.
Zu prüfen ist nun, ob diese Zerlegung eine Klasseneinteilung ist und zudem ist die zugehörige Äquivalenzrealtion R auf M anzugeben...

Wie kann man denn überhaupt prüfen, ob es hier um eine Klasseneinteilung handelt?
Also so richtig nen Ansatz hab ich für beide Problemstellungen nicht... Wäre für eure Hilfe sehr dankbar :D

Mfg, Helmut

        
Bezug
Äquivalenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Fr 20.10.2006
Autor: angela.h.b.


>  Ich habe da eine Aufgabe, mit der ich nicht so ganz warm
> werde ;)
>  Also ich habe eine Zerlegung [mm] M_1={5}, M_2={3,4}, M_3={1,2} [/mm]
> der Menge M={1,2,3,4,5} in Äquivalenzklassen.
>  Zu prüfen ist nun, ob diese Zerlegung eine
> Klasseneinteilung ist und zudem ist die zugehörige
> Äquivalenzrealtion R auf M anzugeben...
>  
> Wie kann man denn überhaupt prüfen, ob es hier um eine
> Klasseneinteilung handelt?

Hallo,

wir haben eine Menge M und Teilmengen [mm] M_1, M_2, M_3. [/mm]

Es gilt
1.) M= [mm] M_1 \cup M_2 \cup M_3 [/mm]
2.) [mm] M_i \not= \emptyset [/mm] für i=1,2,3
3.) Die [mm] M_i [/mm] sind paarweise elementfremd.

Also ist P={ [mm] M_1, M_2, M_3 [/mm] } eine Partition von M, und ich nehme sehr stark an, daß das bei Euch "Klasseneinteilung" genannt wird. Es paßt jedenfalls...

Nun gibt es einen Satz, welcher sagt, daß jede Partition [mm] \{X_i\}_{{i \in I}} [/mm] einer Menge X eine Äquivalenzrelation R auf dieser Menge induziert vermöge
R:= { (x,y) [mm] \in [/mm] X x X : für wenigstens ein i [mm] \in [/mm] I ist x,y [mm] \in X_i [/mm] }.

Ich nehme an, daß das in Deiner Vorlesung oder als "kleine Übung" gezeigt wurde.

Du kriegst also Deine Aquivalenzrelation, indem Du Dir alle Paare zusammenstellst, die jeweils aus Elementen von [mm] M_1, M_2, M_3 [/mm] basteln kannst. Diese steckst Du in eine Menge und hast Deine induzierte Äquivalenzrelation R.

Paare aus [mm] M_2: [/mm] (3,3), (3,4), (4,3), (4,4)
Paare aus [mm] M_1: [/mm]  ...
Paare aus [mm] M_3: [/mm] ...

R:= { (3,3), (3,4), (4,3), (4,4), ... } ist die gesuchte induzierte Äquivalenzrelation.

Gruß v, Angela



Bezug
                
Bezug
Äquivalenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Sa 21.10.2006
Autor: Helmut84

Hey super, vielen Dank!
Hab's begriffen denke ich :)

Nur eine kleine Frage hätte ich noch: warum i [mm] \in [/mm] I? Und: ist 5 [mm] \in [/mm] M1 x M1 (5,5)?

Bezug
                        
Bezug
Äquivalenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Sa 21.10.2006
Autor: angela.h.b.


> Nur eine kleine Frage hätte ich noch: warum i [mm]\in[/mm] I?

Ach, das hatte ich nicht so genau dazugeschrieben: I soll irgendeine Indexmenge sein.

wenn z.B. I={a,b,c,d}, dann ist

$ [mm] \{X_i\}_{{i \in I}} [/mm] $  [mm] =\{ X_a, X_b, X_c, X_d\} [/mm]


> ist 5 [mm]\in[/mm] M1 x M1 (5,5)?

Hä???

5 [mm] \in M_1= \{5\}. [/mm]

(5,5) [mm] \in M_1 [/mm] x [mm] M_1= \{5\} [/mm] x [mm] \{5\} [/mm]

Wahrscheinlich meintest Du das...

R:= { (3,3), (3,4), (4,3), (4,4), (1,1), (1,2), (2,1), (2,2), (5,5) } ist die gesuchte induzierte Äquivalenzrelation.

Gruß v. Angela


Bezug
                                
Bezug
Äquivalenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Sa 21.10.2006
Autor: Helmut84

Ja klar... Mit der Indexmenge hatte ich wohl leicht ein Brett vorm Kopf... :)
Ja genau das war's, wass ich mit der 5 meinte!

Vielen vielen Dank! :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]