www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Äquivalenzklassen
Äquivalenzklassen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:44 So 08.07.2018
Autor: MatheSckell

Aufgabe
Betrachten Sie die Gruppe der [mm] (\IZ, [/mm] +). Seien m und n aus [mm] \IZ. [/mm]
Wir definieren m R n falls 5|(m-n).
Zeigen Sie, dass die so definierte Relation eine Äquivalenzrelation ist und bestimmen Sie die Äquivalenzklassen.
Diese Äquivalenzklassen bilden eine Partition von [mm] \IZ. [/mm] Begründen Sie diese Aussage.

Ich habe bisher die Eigenschaften der Äquivalenzrelation (reflexiv, symmetrisch, transitiv) gezeigt.
Ich verstehe nicht, wie man von dieser Relation auf Äquivalenzklassen kommt. Es geht doch nur um "Teilbarkeit durch 5 "...
Durch die "Lösung" weiß ich, dass diese Äquivalenzklassen wohl die Restklassen sind (meine Dozentin schreibt sie in eckige Klammern: [0][1][2][3][4]). Aber woher dieser (aus meiner Sicht) Gedankensprung?

Weiterhin wird danach gefragt, wieso diese Äquivalenzklassen eine Partition von [mm] \IZ [/mm] bilden. Ich habe zwar eine Lösung, wundere mich aber wie man darauf kommt so etwas zu tun und würde mich daher über einen frischen Ansatz (den ich dann hoffentlich besser nachvollziehen kann) freuen.

        
Bezug
Äquivalenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 So 08.07.2018
Autor: fred97


> Betrachten Sie die Gruppe der [mm](\IZ,[/mm] +). Seien m und n aus
> [mm]\IZ.[/mm]
>  Wir definieren m R n falls 5|(m-n).
>  Zeigen Sie, dass die so definierte Relation eine
> Äquivalenzrelation ist und bestimmen Sie die
> Äquivalenzklassen.
>  Diese Äquivalenzklassen bilden eine Partition von [mm]\IZ.[/mm]
> Begründen Sie diese Aussage.
>  Ich habe bisher die Eigenschaften der Äquivalenzrelation
> (reflexiv, symmetrisch, transitiv) gezeigt.
> Ich verstehe nicht, wie man von dieser Relation auf
> Äquivalenzklassen kommt. Es geht doch nur um "Teilbarkeit
> durch 5 "...
> Durch die "Lösung" weiß ich, dass diese
> Äquivalenzklassen wohl die Restklassen sind (meine
> Dozentin schreibt sie in eckige Klammern: [0][1][2][3][4]).
> Aber woher dieser (aus meiner Sicht) Gedankensprung?


Das ist  kein Gedankensprung. Aequivalenklasse und Restklasse ist das selbe.


>  
> Weiterhin wird danach gefragt, wieso diese
> Äquivalenzklassen eine Partition von [mm]\IZ[/mm] bilden.

Dazu ist zu zeigen : zwei  verschiedene Aequivalenklassen sind disjunkt und die Vereinigung aller Aequivalenklassen ist  die Menge der ganzen Zahlen.


Ich habe

> zwar eine Lösung, wundere mich aber wie man darauf kommt
> so etwas zu tun und würde mich daher über einen frischen
> Ansatz (den ich dann hoffentlich besser nachvollziehen
> kann) freuen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]