www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Äquivalenz von Matrizen
Äquivalenz von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Matrizen: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 17:56 Fr 08.02.2013
Autor: JoeSunnex

Aufgabe
Gegeben sei die Matrix $A = [mm] \pmat{2&1&1&2&2 \\ 1&3&-1&1&1 \\ 3&-1&3&3&3} \in \IQ^{3\times5}$ [/mm]
a.) Geben Sie [mm] $\IQ$-Vektorräume [/mm] $V$ und $W$, Basen $B$ von $V$ und $C$ von $W$ sowie eine lineare Abbildung $f: V [mm] \rightarrow [/mm] W$ an mit: $A = ~_C [mm] f_B$. [/mm]
b.) Zeigen Sie, dass $A$ äquivalent ist zu [mm] $\pmat{1&0&0&0&0 \\ 0&1&0&0&0 \\ 0&0&0&0&0}$. [/mm]
c.) Geben Sie Basen $B'$ von $V$ und $C'$ von $W$ an mit [mm] $\pmat{1&0&0&0&0 \\ 0&1&0&0&0 \\ 0&0&0&0&0} [/mm] = ~_{C'} [mm] id_C \cdot [/mm] ~_C [mm] f_B \cdot [/mm] ~_B [mm] id_{B'}$ [/mm]



Hallo zusammen,

habe derzeit einige Fragen zur Äquivalenz von Matrizen, welche in der VL wie folgt definiert wurde: "Zwei $m [mm] \times [/mm] n$ Matrizen $A$ und $B$ sind äquivalent zueinander genau dann, wenn eine invertierbare $m [mm] \times [/mm] m$ Matrix $S$ und eine invertierbare $n [mm] \times [/mm] n$ Matrix $T$ exisiteren mit $B = SAT$. Diese Tatsache wird sicher bei Aufgabenteil c interessant, aber erstmal zu den davor.

Zu a.) Sei $V := [mm] \IQ^5$ [/mm] und $B := [mm] \{b_1 = (1,0,0,0,0),b_2 = (0,1,0,0,0), \dots, b_5 = (0,0,0,0,1)\}$ [/mm] Basis von $V$. Sei des Weiteren $W := [mm] \IQ^3$ [/mm] und $C := [mm] \{c_1 = (1,0,0), c_2 = (0,1,0), c_3 = (0,0,1)\}$ [/mm] Basis von $W$. Definiere $f: V [mm] \rightarrow [/mm] W: [mm] (x_1,x_2,x_3,x_4,x_5) \mapsto (2x_1+x_2+x_3+2x_4+2x_5,x_1+3x_2-x_3+x_4+x_5,3x_1-x_2+3x_3+3x_4+3x_5)$, [/mm] so ist $A$ die Darstellungsmatrix der linearen Abbildung (nehmt es mir nicht übel, dass ich jetzt nicht explizit Additivität und Homogenität zeige, es ist doch trivial :)), also ist $A = ~_C [mm] f_B$. [/mm]

Zu b.) Nun muss ich mithilfe von Zeilen- und Spaltentransformationen zur anderen Matrix kommen, also
[mm] $\pmat{2&1&1&2&2 \\ 1&3&-1&1&1 \\ 3&-1&3&3&3} \overset{Spalte 5-1 und 4-1}{\Longrightarrow} \pmat{2&1&1&0&0 \\ 1&3&-1&0&0 \\ 3&-1&3&0&0}$ [/mm] wie soll ich jetzt aber am besten weiterverfahren (ihr braucht mir nicht die Rechenschritte hier im Forum vorzurechnen, sondern lediglich die Operationen nennen), denn ich lande bei mir immer bei zwei Nullzeilen, was ich ja nicht erreichen sollte.

Zu c.) Die Transformationsmatrix $~_B [mm] id_{B'}$, [/mm] also im Grunde $T$ nach obiger Definition ist meine Spaltentransformation, also bis dato [mm] $\pmat{1&0&0&-1&-1 \\ 0&1&0&0&0 \\ 0&0&1&0&0 \\ 0&0&0&1&0 \\ 0&0&0&0&1}$, [/mm] bei der anderen kommt es auf die Zeilenoperationen an.

Hoffe ihr könnt mir helfen.

Grüße
Joe

EDIT: OK hat sich erledigt, habe es jetzt doch lösen dürfen mit Gleichheit vom Typ und Rang bei Aufgabenteil b. und bei c. über Bestimmung von Rang und dim(Kern) und weitere schöne Dinge :)


Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]