www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Äquivalente Aussagen
Äquivalente Aussagen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalente Aussagen: Matrizen wichitg bis heut abnd
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 30.11.2004
Autor: semmel

Ich kann diese Aufgabe nich lösen, weil ich weiß , dass doch AB=BA bei den MATRIZEN normalerweise nicht gelten kann, deshalb kapier ich dir Aufgabenstellung nicht.
Sei K ein Körper, und sei A [mm] \in K^{n,n} [/mm] für ein n  [mm] \ge [/mm] 1. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
a) Für alle B [mm] \in K^{n,n} [/mm] gilt AB=BA.
b) Es gibt ein  [mm] \lambda \in [/mm] K mit [mm] A=\lambda [/mm] E.

Ich wär danlkbar für eine Erklärung bis spätestens heut abend, weil ich morgen die Aufgabe abgeben muss.
Pizza.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Äquivalente Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Di 30.11.2004
Autor: Stefan

Hallo semmel!

Deine Art eine Frage zu stellen (keine Begrüßung, keine eigenen Ansätze und Ideen, bis auf die Aufgabenstellung keine konkreten Fragen) und die damit verbundene Erwartungshaltung nach einer "schnellen Lösung" kommentiere ich jetzt mal nicht, ich verweise nur auf unsere Forenregeln, die du bitte beim nächsten Mal beachtest, denn ansonsten gibt es keine Antworten mehr für dich in diesem Forum.

Hast du übrigens schon gesehen, dass man die Fälligkeit bei uns variieren kann und so Aussagen wie "brauche ich bis heute abend..." somit völlig überflüssig sind?

Einen Link zu der Lösung findest du hier.

Wenn du dir die Lösung im Link anschaust, dann beachte bitte, dass du sie ein wenig umschreiben musst, da dort nur invertierbare Matrizen betrachtet werden. Das spielt aber im Großen und Ganzen keine Rolle. Du kannst die Beweisidee übernehmen, musst sie halt nur geeignet modifizieren.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]