www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - ähnlichkeit zweier Matrizen
ähnlichkeit zweier Matrizen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ähnlichkeit zweier Matrizen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:55 Do 05.05.2011
Autor: kushkush

Aufgabe
Man zeige, dass

[mm] $\vektor{a&b\\b&c} \approx \vektor{a& b-ka \\ b-ka & c-2kb+k^{2}a}$ [/mm]

Hallo,

Es muss eine invertierbare Transformationsmatrix gefunden werden, mit der sich die linke Matrix in die rechte überführen lässt bzw. umgekehrt.

Wie finde ich denn eine solche?

Ist es hier nicht hinreichend wenn man die Determinante betrachtet und sieht dass die beiden gleich sind ?

Danke und Gruss
kushkush



        
Bezug
ähnlichkeit zweier Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Do 05.05.2011
Autor: Mousegg

Hallo,
ich kann dir keine endgültige Lösung liefern nur soviel:
Allgemein gilt sind 2 Matrizen ähnlich so haben sie das gleiche charakteristische Polynom. Der Umkehrschluß gilt aber leider nicht , daher ist dieses Kriterium nicht ausreichend.
Eine Möglichkeit wäre die Frobeniusnormalformen zu berechnen und zu überprüfen ob diese übereinstimmen ich vermute aber das dir das nicht viel nützt. Du könntest auch versuchen ein Gleichungssystem aufzustellen aber das wird warscheinlich recht aufwendig.
Vielleicht hat jemand ja noch eine bessere Idee

viele grüße


Bezug
        
Bezug
ähnlichkeit zweier Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Do 05.05.2011
Autor: angela.h.b.


> Man zeige, dass
>
> [mm]\vektor{a&b\\ b&c} \approx \vektor{a& b-ka \\ b-ka & c-2kb+k^{2}a}[/mm]

Hallo,

wie ist die genaue Aufgabenstellung? (Mit Vor- und Nachwort. Das ist wirklich wichtig und nicht etwa eine sadistische Anwandlung meinerseits.)
Unter welchen Voraussetzungen sollst Du das zeigen?

Wie ist in der Aufgabenstellung bzw. Deiner Vorlesung das Zeichen [mm] "\approx" [/mm] definiert?

Daß die Matrizen für beliebige a,b,c,k [mm] \in \IR [/mm] ähnlich sind, wird man kaum zeigen können, denn man sieht schon an der Spur, daß es i.a. nicht stimmt.

Gruß v. Angela




>  
> Hallo,
>  
> Es muss eine invertierbare Transformationsmatrix gefunden
> werden, mit der sich die linke Matrix in die rechte
> überführen lässt bzw. umgekehrt.
>  
> Wie finde ich denn eine solche?
>
> Ist es hier nicht hinreichend wenn man die Determinante
> betrachtet und sieht dass die beiden gleich sind ?
>
> Danke und Gruss
>  kushkush
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]