www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - absolute Konvergenz
absolute Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolute Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Mi 20.06.2007
Autor: FrediBlume

Aufgabe
Seien [mm](a_n)_{n\in\IN}[/mm] eine Folge in [mm]\IR[/mm].
(1) Zeigen Sie: Konvergiert [mm] \sum_{k=1}^{\infty} a_n[/mm] absolut, so konvergiert auch [mm] \sum_{k=1}^{\infty} a^2_n[/mm] absolut.
(2) Geben Sie ein gegenbeispiel dafür an, dass die Umkehrung von (1) falsch ist.
(3) Geben Sie ein Gegenbeispiel dafür an, dass (1) ohne die Bedingung "[mm](a_n)_{n\in\IN}[/mm] konvergiert absolut" falsch ist.
(4) Welche Zahl ist größer? [mm][mm] 1,0000000001^{10000000001} [/mm] oder 2?

Hallo!

Habt ihr einen Tipp für mich? Bin leider ziemlich ratlos... habe mir zu (1) gedacht, dass man vll was mit Teilfolgen machen kann, aber das ist auch nur so ein Gedanke.
Zu (4) habe ich nachgerechnet, dass ersteres größer ist... aber wie beweise ich das?

Liebe Grüße, Fredi

        
Bezug
absolute Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mi 20.06.2007
Autor: dormant

Hi!

i) [mm] |a_n| [/mm] ist Nullfolge, also ist ab einem N [mm] |a_k|<1 [/mm] für alle k>N und [mm] |a_{k}^{2}|<|a_k| [/mm] => Majorantenkriterium.

ii) Das Beispiel ist so bekannt, das du nur dein Ana-Buch aufschlagen musst.

iii) Schau dir eine unendliche Summe einer alternierenden Folge. Gibts auch im Ana-Buch. Kannst auch die Folge der Reihe aus ii) benutzen, aber mit alternierendem Vorzeichen.

iv) Hierzu fällt mir leider nix ein.

Gruß,
dormant

Bezug
                
Bezug
absolute Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Do 21.06.2007
Autor: FrediBlume

Hallo dormant,

Danke für deine ausführliche Antwort.
Was ich bei i) mit dem Majorantenkriterium machen soll weiß ich noch nicht so genau, werde mich bemühen, es herauszufinden.
Zu ii) und iii) werde ich mal nachschlagen.

Danke und LG, Fredi

Bezug
        
Bezug
absolute Konvergenz: zu (4)
Status: (Antwort) fertig Status 
Datum: 10:49 Do 21.06.2007
Autor: angela.h.b.


>  (4) Welche Zahl ist größer? [mm][mm]1,0000000001^{10000000001}[/mm] oder 2?

Hallo,

das bekommst Du mit der Bernoulli-Ungleichung.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]