www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - absolut stetig
absolut stetig < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolut stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Fr 28.11.2014
Autor: questionpeter

Aufgabe
Seien (X, [mm] \mathcal{A}) [/mm] ein Messraum und [mm] \mu,\nu,\lambda [/mm] Maße auf [mm] \mathcal{A}. [/mm] Zeige:

a) [mm] \nu \ll \mu, \nu \perp \mu \Rightarrow \nu=0 [/mm]

b) [mm] \lambda \ll \nu, \nu \ll \mu \Rightarrow \lambda \ll \mu [/mm]

Hallo zusammen,

zu a) da [mm] \nu \ll \mu [/mm] gilt heiß das dass [mm] \mu(A)=0 \Rightarrow \nu(A)=0 [/mm] für A [mm] \in \mathcal{A}, [/mm] d.h jede [mm] \mu-Nullmenge [/mm] ist auch eine [mm] \nu-Nullmenge [/mm]

zudem kommt [mm] \nu \perp \mu [/mm] d.h. es gibt eine disjunkte Zerlegung von X=A [mm] \cup [/mm]  B in messbaren Mengen sodass [mm] \mu(B)=0 [/mm] und [mm] \nu(A)=0 [/mm]

folgt nicht dann dass [mm] \nu=0 [/mm] ist?

zub) ist es nicht wie bei einer hinetreinanderausführung?

bin für jeden Tipp dankbar.

        
Bezug
absolut stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 Sa 29.11.2014
Autor: andyv

Hallo

> Seien (X, [mm]\mathcal{A})[/mm] ein Messraum und [mm]\mu,\nu,\lambda[/mm]
> Maße auf [mm]\mathcal{A}.[/mm] Zeige:
>  
> a) [mm]\nu \ll \mu, \nu \perp \mu \Rightarrow \nu=0[/mm]
>  
> b) [mm]\lambda \ll \nu, \nu \ll \mu \Rightarrow \lambda \ll \mu[/mm]
>  
> Hallo zusammen,
>  
> zu a) da [mm]\nu \ll \mu[/mm] gilt heiß das dass [mm]\mu(A)=0 \Rightarrow \nu(A)=0[/mm]
> für A [mm]\in \mathcal{A},[/mm] d.h jede [mm]\mu-Nullmenge[/mm] ist auch
> eine [mm]\nu-Nullmenge[/mm]
>
> zudem kommt [mm]\nu \perp \mu[/mm] d.h. es gibt eine disjunkte
> Zerlegung von X=A [mm]\cup[/mm]  B in messbaren Mengen sodass
> [mm]\mu(B)=0[/mm] und [mm]\nu(A)=0[/mm]
>  
> folgt nicht dann dass [mm]\nu=0[/mm] ist?

Ja, es folgt [mm] $\nu(X)=0$, [/mm] also [mm] $\nu=0$ [/mm]

>  
> zub) ist es nicht wie bei einer hinetreinanderausführung?

Aehnlich, ja.

>  
> bin für jeden Tipp dankbar.

Liebe Grüße


Bezug
        
Bezug
absolut stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 03:51 Sa 29.11.2014
Autor: tobit09

Hallo questionpeter!


> Seien (X, [mm]\mathcal{A})[/mm] ein Messraum und [mm]\mu,\nu,\lambda[/mm]
> Maße auf [mm]\mathcal{A}.[/mm] Zeige:
>  
> a) [mm]\nu \ll \mu, \nu \perp \mu \Rightarrow \nu=0[/mm]
>  
> b) [mm]\lambda \ll \nu, \nu \ll \mu \Rightarrow \lambda \ll \mu[/mm]


> zu a) da [mm]\nu \ll \mu[/mm] gilt heiß das dass [mm]\mu(A)=0 \Rightarrow \nu(A)=0[/mm]
> für A [mm]\in \mathcal{A},[/mm] d.h jede [mm]\mu-Nullmenge[/mm] ist auch
> eine [mm]\nu-Nullmenge[/mm]
>
> zudem kommt [mm]\nu \perp \mu[/mm] d.h. es gibt eine disjunkte
> Zerlegung von X=A [mm]\cup[/mm]  B in messbaren Mengen sodass
> [mm]\mu(B)=0[/mm] und [mm]\nu(A)=0[/mm]
>  
> folgt nicht dann dass [mm]\nu=0[/mm] ist?

Genau das ist zu zeigen!

Warum gilt [mm] $\nu(C)=0$ [/mm] für alle [mm] $C\in\mathcal{A}$? [/mm]

Wie andyv schon schrieb: Es genügt dafür [mm] $\nu(X)=0$ [/mm] zu zeigen, denn dann folgt [mm] $0\le\nu(C)\le\nu(X)=0$ [/mm] für alle [mm] $C\in\mathcal{A}$. [/mm]

Zeige nun [mm] $\nu(X)=0$! [/mm]


Seien [mm] $A,B\in\mathcal{A}$ [/mm] obige disjunkte Mengen mit [mm] $\mu(B)=0$ [/mm] und [mm] $\nu(A)=0$. [/mm]

Was weißt du über [mm] $\nu(B)$? [/mm]

Wie hängt [mm] $\nu(X)$ [/mm] mit [mm] $\nu(A)$ [/mm] und [mm] $\nu(B)$ [/mm] zusammen?


> zub) ist es nicht wie bei einer hinetreinanderausführung?

(Was meinst du damit?)

> bin für jeden Tipp dankbar.

Mache dir zunächst wieder die Definition der drei [mm] $\ll$-Aussagen [/mm] klar.

Die zu Zeigende lautet z.B.:

Für alle [mm] $A\in\mathcal{A}$ [/mm] mit [mm] $\mu(A)=0$ [/mm] gilt auch [mm] $\lambda(A)=0$. [/mm]

Sei also [mm] $A\in\mathcal{A}$ [/mm] mit [mm] $\mu(A)=0$. [/mm]
Zu zeigen ist [mm] $\lambda(A)=0$. [/mm]

Wende dazu [mm] $\nu\ll\mu$ [/mm] und [mm] $\lambda\ll\nu$ [/mm] auf $A$ an!


Viele Grüße
Tobias

Bezug
                
Bezug
absolut stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 So 30.11.2014
Autor: questionpeter

zu a) d.h. da mit [mm] \nu \\ll \mu ,\mu(A)=0 [/mm] auch [mm] \nu [/mm] (A)=0 folgt und da es eine disjunkte mengen gibt mit [mm] X=A\cup [/mm] B d.h [mm] \mu(B)=0 [/mm] und [mm] \nu(A)=0 [/mm]

erhalten wir doch [mm] \mu(X)=0 [/mm] wegen der bedingung [mm] \nu \ll \mu [/mm] folt dann auch [mm] \nu(X)=0 [/mm]

ist das richtig?

Bezug
                        
Bezug
absolut stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Mo 01.12.2014
Autor: tobit09


> zu a) d.h. da mit [mm]\nu \ll \mu ,\mu(A)=0[/mm] auch [mm]\nu[/mm] (A)=0
> folgt und da es eine disjunkte mengen gibt mit [mm]X=A\cup[/mm] B
> d.h [mm]\mu(B)=0[/mm] und [mm]\nu(A)=0[/mm]
>  
> erhalten wir doch [mm]\mu(X)=0[/mm]

Nein, [mm] $\mu(X)=0$ [/mm] gilt im Allgemeinen nicht.


> wegen der bedingung [mm]\nu \ll \mu[/mm]
> folt dann auch [mm]\nu(X)=0[/mm]

Folgerichtig.


Ich schrieb als Anleitung für den Beweis von [mm] $\nu(X)=0$: [/mm]

> Seien $ [mm] A,B\in\mathcal{A} [/mm] $ obige disjunkte Mengen mit $ [mm] \mu(B)=0 [/mm] $ und $ [mm] \nu(A)=0 [/mm] $.
>
> Was weißt du über $ [mm] \nu(B) [/mm] $?

Verwende [mm] $\nu\ll\mu$ [/mm] zu und [mm] $\mu(B)=0$. [/mm]

> Wie hängt $ [mm] \nu(X) [/mm] $ mit $ [mm] \nu(A) [/mm] $ und $ [mm] \nu(B) [/mm] $ zusammen?

Verwende die Additivität von [mm] $\nu$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]