www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - ablenkung im magnetfeld
ablenkung im magnetfeld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ablenkung im magnetfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 So 07.01.2007
Autor: der_puma

Aufgabe
aus einer ekeltronenkanone werden elektronen druch ein magnetfeld geschossen, die beschleunigungsspannung beträgt 3kV. die elektronen durchlaufen eine l=4cm breite zone, in der ein homogenes magnetfeld mit der flusßdichte B=1,25mT herrscht. hinter der vom magnetfeld durchsetzten zone durchlaufen die elektronen eine l2=20 cm breite, feldfreie zone. danach treffen sie auf einen schirm auf.
berechnen sie , um welches tück s der auftreffpunkt der elektronen gegen denjenigen punkt verschoben ist, den sie auf dem schrim ohne magentische ablenkung erreichen würden.

hi,

also ich hab zuerst einmal die geschwindikeit V berechnet....die ist 32,5Mm/s groß.nun weiss ich aber auch schon nicht mehr weiter....muss das jetzt zerlegen in x-und y -richtung oder wie mach ich da wieter?

gruß

        
Bezug
ablenkung im magnetfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 So 07.01.2007
Autor: Rene

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Sobald das Elektron in das Magnetfeld eintrifft, wird es aufgrund der Lorentz Kraft in eine Kreisbahn gezwungen. Da auf einen Körper der sich auf einer Kreisbahn bewegt die Radialkraft wirkt und diese der Lorentzkraft entgegenwirkt, kannst du diese Gleichsetzen.

$F_{L}=F_{R}$
$evB=\bruch{m_{e}v^{2}}{R}$

umstellen nach R

$R=\bruch{m_{e}v}{eB}$

Wegen der Kreisbahn wird die Gleichung für einen Kreis benutzt

$R^{2}=y^{2}+x^{2}$
$y=\wurzel{R^{2}-x^{2}}$

Einsetzen von R

$y(x)=\wurzel{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-x^{2}}$

Am Ende des Magnetfeldes, hat das Elektron sich um einen bestimmten Wert nach oben bzw. unten bewegt. Dieser entspricht

$y(l_{1}=\wurzel{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-l_{1}^{2}}$

Das die Bahngeschwindigkeit des Elektron tangential zur Kreisbahn steht, tritt das Elektron am Ende des Magnetfeldes tangential zur Kreisbahn aus und bewegt sich gerade weiter. Aus dem Anstieg im Punkt $l_{1}$ kann der Austrittswinkel und damit der Weg bestimmt werden um den es sich weiter nach oben bewegt.

$y'(l_{1})=m=tan(\alpha)$
$y'(l_{1})=\bruch{l_{1}}{\wurzel{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-l_{1}^{2}}$

Über Winkelbeziehungen im Rechtwinkligen Dreieck erhält man

$tan(\alpha)=\bruch{s'}{l_{2}}$

Einsetzen und umstellen nach s' ergibt nun

$s'=\bruch{l_{1}}{l_{2}}\bruch{1}{\wurzel{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-l_{1}^{2}}$

Aus der Ablenkung um Magnetfeld und der Ablenkung nach dem Magnetfeld ergibt sich die gesamte Ablenkung

$s=y(l_{1})+s'$
$s=\wurzel{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-l_{1}^{2}} + \bruch{l_{1}}{l_{2}}\bruch{1}{\wurzel{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-l_{1}^{2}}$

Man kann nun noch vereinfachen

$s=\wurzel{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-l_{1}^{2}} * ( 1 + \bruch{l_{1}}{l_{2}}\bruch{1}{\bruch{m_{e}^{2}v^{2}}{e^{2}B^{2}}-l_{1}^{2}})$

MFG
René

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]