www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - ableitungen
ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableitungen: tangensfunktion
Status: (Frage) beantwortet Status 
Datum: 22:40 So 30.10.2005
Autor: marabu

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo erstmal,
Dies ist mein erster Post, also seid bitte rücksichtsvoll ;)

Ich versuche die funktionen f(x)= tan(WURZEL(X)) und
f(x)=WURZEL(tan(WURZEL(x)))
abzuleiten, weiss jedoch nicht, wie ich beginnen soll...
könnt ihr mir behilflichsein?
lg
marabu

        
Bezug
ableitungen: Kettenregel
Status: (Antwort) fertig Status 
Datum: 22:59 So 30.10.2005
Autor: Loddar

Hallo marabu,

[willkommenmr] !!


Aber die Ableitung der Tangens-Funktion kennst Du?


Auf jeden Fall musst Du hier MBKettenregel vorgehen, da hier ja verkettete Funktionen vorliegen haben.


$f(x) \ = \ [mm] \tan\left( \ \wurzel{x} \ \right) [/mm] \ = \ [mm] \tan\left( \ x^{\bruch{1}{2}} \ \right)$ [/mm]


Damit haben wir als äußere Ableitung :  [mm] $\left[ \ \tan(...) \ \right]' [/mm] \ = \ 1 + [mm] \tan^2(...)$ [/mm]


Und als innere Ableitung :  [mm] $\left[ \ x^{\bruch{1}{2}} \ \right]' [/mm] \ = \ [mm] \bruch{1}{2}*x^{-\bruch{1}{2}} [/mm] \ = \ [mm] \bruch{1}{2*\wurzel{x}}$ [/mm]


Kannst Du nun die Ableitung fertig zusammensetzen gemäß der MBKettenregel ?


Gruß
Loddar


Bezug
                
Bezug
ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 So 30.10.2005
Autor: marabu

joa ich kenn nur die ableitung vom tangens noch nicht.... wie komm ich auf diese? vlleicht in sinus umformen und in den diffenzquotienten einsetzen??

Bezug
                        
Bezug
ableitungen: Quotientenregel
Status: (Antwort) fertig Status 
Datum: 23:16 So 30.10.2005
Autor: Loddar

Hallo marabu!


Die Ableitung des Tangens erhält man durch die MBQuotientenregel:

[mm] $\tan(x) [/mm] \ = \ [mm] \bruch{\sin(x)}{\cos(x)}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
ableitungen: o0o quotientenregel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:33 So 30.10.2005
Autor: marabu

oh verdammt, darauf hätte ich natürlich auch selbst kommen müssen -.- dankeschön; marabu

Bezug
        
Bezug
ableitungen: des weiteren:
Status: (Frage) beantwortet Status 
Datum: 23:05 So 30.10.2005
Autor: marabu

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

und genauso gehts mir hierbei:

[mm] f(x)=sin^n(x) [/mm]  -.-

Bezug
                
Bezug
ableitungen: auch Kettenregel
Status: (Antwort) fertig Status 
Datum: 23:23 So 30.10.2005
Autor: Loddar

Hallo ...


[mm]f(x) \ = \ \sin^n(x) \ = \ \left[ \ \sin(x) \ \right]^n[/mm]


Auch hier MBKettenregel mit [mm] $[...]^n$ [/mm] als äußere Funktion, sowie [mm] $\sin(x)$ [/mm] als innere Funktion.


Gruß
Loddar


Bezug
                        
Bezug
ableitungen: olé
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:36 So 30.10.2005
Autor: marabu

super, dankeschön!

ein lob an dieses forum ;)

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]