www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - abbildungsmatrix
abbildungsmatrix < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abbildungsmatrix: spiegelung
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 13.06.2007
Autor: Kathinka

hallöchen,
hab schon ein bisschen im forum hier gesucht und gefunden, dass die abbildungsmatrix für eine spiegelung so aussieht:

[mm] \pmat{ cos2\alpha & sin2\alpha \\ sin2\alpha & -cos2\alpha } [/mm]

hm, mir ist leider nur überhaupt nicht klar warum das so ist. wäre für eine kurze erklärung sehr dankbar, hab leider nichts dazu gefunden.

wenn ich nun eine gleitspiegelung habe, also eine spiegelung und danach eine parallelverschiebung des objekt, könnte ich das dann so darstellen?:

[mm] \pmat{ cos2\alpha & sin2\alpha \\ sin2\alpha & -cos2\alpha } [/mm] + [mm] \vektor{c1 \\ c2} [/mm]

wobei c1,c2 dann der verschiebungsvektor ist? und wenn ich nur eine veschiebung habe kann ich einfach meinen ursprungspunkt nehmen und auch den verschiebungsvektor addieren, da gibt es dann gar keine "abbildungsmatrix" in dem sinne oder?

vielen dank :) lg katja

        
Bezug
abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:21 Do 14.06.2007
Autor: Somebody

>hallöchen,
> hab schon ein bisschen im forum hier gesucht und gefunden,
> dass die abbildungsmatrix für eine spiegelung so aussieht:
>  
> [mm]\pmat{ \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos2\alpha }[/mm]
>  
> hm, mir ist leider nur überhaupt nicht klar warum das so
> ist. wäre für eine kurze erklärung sehr dankbar, hab leider
> nichts dazu gefunden.

[mm]\alpha[/mm] ist offenbar der Steigungswinkel der Gerade (durch den Ursprung), an der gespiegelt wird: die Spaltenvektoren der Abbildungsmatrix einer solchen linearen Abbildung sind einfach die Bilder der Basisvektoren: also überleg' mal, wie die beiden Basiseinheitsvektoren bei Spiegelung an dieser Geraden abgebildet werden. (Bem: Man könnte diese Abbildungsmatrix auch als Produkt dreier Abbildungsmatrizen erhalten: der Matrix einer Drehung um [mm]-\alpha[/mm], einer Spiegelung an der [mm]x[/mm]-Achse und einer Drehung um [mm]+\alpha[/mm].)

>
> wenn ich nun eine gleitspiegelung habe, also eine
> spiegelung und danach eine parallelverschiebung des objekt,
> könnte ich das dann so darstellen?:
>  
> [mm]\pmat{ \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha } + \vektor{c_1 \\ c_2}[/mm]
>  
> wobei c1,c2 dann der verschiebungsvektor ist? und wenn ich
> nur eine veschiebung habe kann ich einfach meinen
> ursprungspunkt nehmen und auch den verschiebungsvektor
> addieren, da gibt es dann gar keine "abbildungsmatrix" in
> dem sinne oder?

Nein: bei einer linearen Abbildung ist ja der Ursprung des Koordinatensystems (bzw. der Nullvektor) stets ein Fixpunkt. Nimmst Du eine (nicht-null) Translation dazu, so erhältst Du eine "affine" Abbildung, die also, wie Du richtig gemerkt hast, nicht mehr eine lineare Abbildung im eigentlichen Sinne ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]