www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Zwischenwertsatz
Zwischenwertsatz < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Do 19.04.2007
Autor: sancho1980

Hallo,

ich habe eine Frage zum Zwischenwertsatz. Bei Wikipedia steht da:

"Es sei f: [a, b] [mm] \to \IR [/mm] eine stetige reelle Funktion, die auf einem Intervall definiert ist. Dann existiert zu jedem v [mm] \in [/mm] [f(a), f(b)] ein u [mm] \in [/mm] [a, b] mit f(u) = v."

Meine Frage dazu: Setzt diese Definition nicht stillschweigend voraus, dass f eine monoton steigende Funktion ist?
Mein Gegenbeispiel wäre die Funktion f: ]0, 1] [mm] \to \IR, [/mm] x [mm] \to \bruch{1}{x}. [/mm] Denn das Intervall [f(a), f(b)] ist ja dann ziemlich sinnfrei, denn f(a) > f(b) und I = ]a, b] bedeutet doch:

x [mm] \in [/mm] ]a, b] [mm] \Rightarrow [/mm] a < x [mm] \le [/mm] b

Versteht ihr was ich sagen will?

Gruß,

Martin



        
Bezug
Zwischenwertsatz: Jein...
Status: (Antwort) fertig Status 
Datum: 21:22 Do 19.04.2007
Autor: AT-Colt

Hallo Martin,

technisch gesehen hast Du recht, die Definition von Wikipedia ist falsch. Vollkommen richtig müsste sie eigentlich lauten:

"Es sei $f: [a, b] [mm] \to \IR [/mm] $ eine stetige reelle Funktion, die auf einem Intervall definiert ist. Dann existiert zu jedem $v [mm] \in [\min\{f(a),f(b)\}, \max\{f(a),f(b)\}]$ [/mm] ein $u [mm] \in [/mm] [a, b]$ mit $f(u) = v$."

Beachte die Bildung von Minimum und Maximum im Bildbereich.

Nur mit dieser Definition ist sichergestellt, dass das betrachtete "Ziel"Intervall auch nicht leer ist. Allerdings wirst Du mir zustimmen, dass das nicht besonders nett zu lesen ist, weswegen wahrscheinlich der Autor bei Wikipedia diese etwas schludrigere Form gewählt hat, um den Zwischenwertsatz zu formulieren.

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]