www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Zwischenwerteigenschaft Abl
Zwischenwerteigenschaft Abl < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwerteigenschaft Abl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Do 25.10.2012
Autor: theresetom

Aufgabe
Sei f [mm] \in [/mm] D(a,b) , c, d [mm] \in [/mm] (a,b) , f'(c) < y < f'(x). Dann gibt es ein [mm] \psi \in [/mm] (c,d) mit [mm] f'(\psi) [/mm] =y

Hallo
Ich verstehe den Beweis im SKriptum nicht vollkommen.

Sei g(x) = f(x) - yx.
Da g stetig ist nimmt es zwischen c und d sein Maximum auf [c,d] an, sagen wir, an der Stelle [mm] \psi. [/mm]
Nachdem g'(c) = f'(c) - y < 0 und g'(d) = f'(d) - y >0 gilt
[mm] \psi \in [/mm] (c,d) mit [mm] g'(\psi)=0=f'(\psi) [/mm] - y

Meine Frage:
Warum folgt: [mm] \psi \in [/mm] (c,d) mit [mm] g'(\psi)=0 [/mm] aus dem obigen?

        
Bezug
Zwischenwerteigenschaft Abl: Antwort
Status: (Antwort) fertig Status 
Datum: 06:11 Fr 26.10.2012
Autor: fred97


> Sei f [mm]\in[/mm] D(a,b) , c, d [mm]\in[/mm] (a,b) , f'(c) < y < f'(x).


Du meinst sicher f'(c) < y < f'(d)

> Dann
> gibt es ein [mm]\psi \in[/mm] (c,d) mit [mm]f'(\psi)[/mm] =y
>  Hallo
>  Ich verstehe den Beweis im SKriptum nicht vollkommen.
>  
> Sei g(x) = f(x) - yx.
>  Da g stetig ist nimmt es zwischen c und d sein Maximum auf
> [c,d] an, sagen wir, an der Stelle [mm]\psi.[/mm]
>  Nachdem g'(c) = f'(c) - y < 0 und g'(d) = f'(d) - y >0
> gilt
>  [mm]\psi \in[/mm] (c,d) mit [mm]g'(\psi)=0=f'(\psi)[/mm] - y
>  
> Meine Frage:
>  Warum folgt: [mm]\psi \in[/mm] (c,d) mit [mm]g'(\psi)=0[/mm] aus dem obigen?


g hat in [mm] \psi \in [/mm] (a,b) ein lokales Maximum, also ist [mm] g'(\psi)=0. [/mm] Damit ist [mm] f'(\psi)=y. [/mm]

Wegen [mm] \psi \in [/mm] [c,d] und f'(c) < y < f'(x), ist [mm] \psi \in [/mm] (c,d)

FRED

Bezug
                
Bezug
Zwischenwerteigenschaft Abl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:17 Fr 26.10.2012
Autor: tobit09

Hallo Fred!

(Ich gehe mal von c<d aus. Das steht zwar nirgendwo, ist aber sicherlich so gemeint.)

> g hat in [mm]\psi \in[/mm] (a,b) ein lokales Maximum,

Bist du da sicher? Warum sollte [mm] $g\colon(a,b)\to\IR$ [/mm] im Falle [mm] $\psi=c$ [/mm] oder [mm] $\psi=d$ [/mm] (der bis dato nicht ausgeschlossen wurde) ein lokales Maximum an der Stelle [mm] $\psi$ [/mm] haben? [mm] $\psi$ [/mm] ist ja globales Maximum nur von [mm] $g|_{[c,d]}$. [/mm]

Ich glaube, die ganze Argumentation müsste mit einem Minimum statt einem Maximum geführt werden. Dann lässt sich [mm] $\psi=c$ [/mm] und [mm] $\psi=d$ [/mm] mittels $g'(c)<0$ und $g'(d)>0$ ausschließen.

Viele Grüße
Tobias

Bezug
                        
Bezug
Zwischenwerteigenschaft Abl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Fr 26.10.2012
Autor: fred97


> Hallo Fred!
>  
> (Ich gehe mal von c<d aus. Das steht zwar nirgendwo, ist
> aber sicherlich so gemeint.)
>  
> > g hat in [mm]\psi \in[/mm] (a,b) ein lokales Maximum,
>  Bist du da sicher? Warum sollte [mm]g\colon(a,b)\to\IR[/mm] im
> Falle [mm]\psi=c[/mm] oder [mm]\psi=d[/mm] (der bis dato nicht ausgeschlossen
> wurde) ein lokales Maximum an der Stelle [mm]\psi[/mm] haben? [mm]\psi[/mm]
> ist ja globales Maximum nur von [mm]g|_{[c,d]}[/mm].
>  
> Ich glaube, die ganze Argumentation müsste mit einem
> Minimum statt einem Maximum geführt werden. Dann lässt
> sich [mm]\psi=c[/mm] und [mm]\psi=d[/mm] mittels [mm]g'(c)<0[/mm] und [mm]g'(d)>0[/mm]
> ausschließen.

Hallo Tobias,

ja, Du hast völlig recht.

Gruß FRED

>  
> Viele Grüße
>  Tobias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]