www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zwischenkp, 12.Kreisteilungskp
Zwischenkp, 12.Kreisteilungskp < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenkp, 12.Kreisteilungskp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Mo 24.01.2011
Autor: Lippel

Aufgabe
[mm] $\zeta$ [/mm] sei primitive 12. Einheitswurzel über [mm] $\IQ$. [/mm] Bestimme alle Zwischenkörper von [mm] $\IQ(\zeta)/\IQ$ [/mm]

Hallo,

ich schaffe es nicht, die Zwischenkörper explizit anzugeben. Gibt es da ein Verfahren?

So weit bin ich:
Es ist [mm] $\varphi(12) [/mm] = 4$ mit der Eulerschen [mm] $\varphi$-Funktion. [/mm] Damit ist [mm] $Gal(\IQ(\zeta)/\IQ \cong (\IZ/12\IZ)^{\times} [/mm] = [mm] \{1,5,7,11\}$ [/mm]
Die echten Untergruppen [mm] von$(\IZ/12\IZ)^{\times}$ [/mm] sind [mm] $U_1:=\{1,5\}, U_2=\{1,7\}, U_3=\{1,11\}$ [/mm] und daneben die zwei trivialen Untergruppen, die natürlich [mm] $\IQ$ [/mm] und [mm] $\IQ(\zeta)$ [/mm] entsprechen.

Nun habe ich versucht die Fixkörper der Untergruppen zu bestimmen, indem ich ausprobiert habe. Meine Vermutung ist:
[mm] $\IQ(\zeta)^{U_1} [/mm] = [mm] \IQ(\zeta+\zeta^5)$, [/mm] da [mm] $\zeta+\zeta^5$ [/mm] invariant ist unter [mm] $U_1\:$ [/mm]
[mm] $\IQ(\zeta)^{U_3} [/mm] = [mm] \IQ(\zeta+\zeta^{11})$, [/mm] da [mm] $\zeta+\zeta^{11}$. [/mm]
Zu [mm] $U_2\:$ [/mm] habe ich gar keine Idee.

Kann mir hier jemand weiter helfen? Danke!

LG Lippel

        
Bezug
Zwischenkp, 12.Kreisteilungskp: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 24.01.2011
Autor: felixf

Moin!

> [mm]\zeta[/mm] sei primitive 12. Einheitswurzel über [mm]\IQ[/mm]. Bestimme
> alle Zwischenkörper von [mm]\IQ(\zeta)/\IQ[/mm]
>  
> ich schaffe es nicht, die Zwischenkörper explizit
> anzugeben. Gibt es da ein Verfahren?

Klar doch :-)

Wenn du eine Untergruppe $U$ von $Gal(L/K)$ hast, nimmst du dir ein Erzeugendensystem [mm] $\sigma_1, \dots, \sigma_n$ [/mm] (hier reicht ja $n = 1$) der Untergruppe $U$ und eine $K$-Basis von $L$, [mm] $v_1, \dots, v_k$, [/mm] und schaust dir die Matrixrepraesentation von den $K$-linearen Homomorphismen [mm] $\varphi_i [/mm] : L [mm] \to [/mm] L$, $x [mm] \mapsto \sigma_i(x) [/mm] - x$ bzgl. der Basis [mm] $v_1, \dots, v_k$ [/mm] an. Es gilt [mm] $\ker \varphi_i [/mm] = [mm] L^{\langle \sigma_i \rangle}$ [/mm] und [mm] $\bigcap_{i=1}^k \ker \varphi_i [/mm] = [mm] L^U$. [/mm]

Wie du die Matrizen von [mm] $\varphi_i$ [/mm] bzgl. den Basen bestimmst ist normalerweise einfach, und Kerne und Schnitte von Untervektorraeumen bestimmen ist auch nicht schwer. Damit erhaelst du schliesslich eine $K$-Basis [mm] $w_1, \dots, w_d$ [/mm] von [mm] $L^U$, [/mm] und somit ist [mm] $L^U [/mm] = [mm] K(w_1, \dots, w_d)$. [/mm] Das kannst du nun in $d - 1$ Schritten (falls $L/K$ separabel ist) in die Form [mm] $L^U [/mm] = [mm] K(\alpha)$ [/mm] bringen mit einem passenden [mm] $\alpha$. [/mm] (Wie das geht siehst du etwa im Beweis des []Satzes vom primitiven Element.)

> So weit bin ich:
>  Es ist [mm]\varphi(12) = 4[/mm] mit der Eulerschen
> [mm]\varphi[/mm]-Funktion. Damit ist [mm]Gal(\IQ(\zeta)/\IQ \cong (\IZ/12\IZ)^{\times} = \{1,5,7,11\}[/mm]
>  
> Die echten Untergruppen von[mm](\IZ/12\IZ)^{\times}[/mm] sind
> [mm]U_1:=\{1,5\}, U_2=\{1,7\}, U_3=\{1,11\}[/mm] und daneben die
> zwei trivialen Untergruppen, die natürlich [mm]\IQ[/mm] und
> [mm]\IQ(\zeta)[/mm] entsprechen.

[ok]

> Nun habe ich versucht die Fixkörper der Untergruppen zu
> bestimmen, indem ich ausprobiert habe. Meine Vermutung
> ist:
>  [mm]\IQ(\zeta)^{U_1} = \IQ(\zeta+\zeta^5)[/mm], da [mm]\zeta+\zeta^5[/mm]
> invariant ist unter [mm]U_1\:[/mm]

Da [mm] $\zeta [/mm] + [mm] \zeta^5$ [/mm] invariant unter [mm] $U_1$ [/mm] ist folgt [mm] $\IQ(\zeta [/mm] + [mm] \zeta^5) \subseteq \IQ(\zeta)^{U_1}$. [/mm] Dass beide Koerper gleich sind musst du noch zeigen.

(Tipp: hier reicht ein einfaches Gradargument. Kann [mm] $\IQ(\zeta [/mm] + [mm] \zeta^5) [/mm] = [mm] \IQ$ [/mm] sein? Und was ist [mm] $[\IQ(\zeta)^{U_1} [/mm] : [mm] \IQ]$?) [/mm]

>  [mm]\IQ(\zeta)^{U_3} = \IQ(\zeta+\zeta^{11})[/mm], da
> [mm]\zeta+\zeta^{11}[/mm].

[ok]

>  Zu [mm]U_2\:[/mm] habe ich gar keine Idee.

Na, wie waer's denn mit [mm] $\IQ(\zeta [/mm] + [mm] \zeta^7)$? [/mm]

LG Felix


Bezug
                
Bezug
Zwischenkp, 12.Kreisteilungskp: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:48 Mo 24.01.2011
Autor: Lippel

Sorry, Doppelpost.
Bezug
                
Bezug
Zwischenkp, 12.Kreisteilungskp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Mo 24.01.2011
Autor: Lippel

Vielen Dank!

> > [mm]\zeta[/mm] sei primitive 12. Einheitswurzel über [mm]\IQ[/mm]. Bestimme
> > alle Zwischenkörper von [mm]\IQ(\zeta)/\IQ[/mm]
>  >  
> > ich schaffe es nicht, die Zwischenkörper explizit
> > anzugeben. Gibt es da ein Verfahren?
>  
> Klar doch :-)
>  
> Wenn du eine Untergruppe [mm]U[/mm] von [mm]Gal(L/K)[/mm] hast, nimmst du dir
> ein Erzeugendensystem [mm]\sigma_1, \dots, \sigma_n[/mm] (hier
> reicht ja [mm]n = 1[/mm]) der Untergruppe [mm]U[/mm] und eine [mm]K[/mm]-Basis von [mm]L[/mm],
> [mm]v_1, \dots, v_k[/mm], und schaust dir die Matrixrepraesentation
> von den [mm]K[/mm]-linearen Homomorphismen [mm]\varphi_i : L \to L[/mm], [mm]x \mapsto \sigma_i(x) - x[/mm]
> bzgl. der Basis [mm]v_1, \dots, v_k[/mm] an. Es gilt [mm]\ker \varphi_i = L^{\langle \sigma_i \rangle}[/mm]
> und [mm]\bigcap_{i=1}^k \ker \varphi_i = L^U[/mm].
>  
> Wie du die Matrizen von [mm]\varphi_i[/mm] bzgl. den Basen bestimmst
> ist normalerweise einfach, und Kerne und Schnitte von
> Untervektorraeumen bestimmen ist auch nicht schwer. Damit
> erhaelst du schliesslich eine [mm]K[/mm]-Basis [mm]w_1, \dots, w_d[/mm] von
> [mm]L^U[/mm], und somit ist [mm]L^U = K(w_1, \dots, w_d)[/mm]. Das kannst du
> nun in [mm]d - 1[/mm] Schritten (falls [mm]L/K[/mm] separabel ist) in die
> Form [mm]L^U = K(\alpha)[/mm] bringen mit einem passenden [mm]\alpha[/mm].
> (Wie das geht siehst du etwa im Beweis des
> []Satzes vom primitiven Element.)

Schön, dass schau ich mir nochmal in Ruhe an ;)

>  
> > So weit bin ich:
>  >  Es ist [mm]\varphi(12) = 4[/mm] mit der Eulerschen
> > [mm]\varphi[/mm]-Funktion. Damit ist [mm]Gal(\IQ(\zeta)/\IQ \cong (\IZ/12\IZ)^{\times} = \{1,5,7,11\}[/mm]
>  
> >  

> > Die echten Untergruppen von[mm](\IZ/12\IZ)^{\times}[/mm] sind
> > [mm]U_1:=\{1,5\}, U_2=\{1,7\}, U_3=\{1,11\}[/mm] und daneben die
> > zwei trivialen Untergruppen, die natürlich [mm]\IQ[/mm] und
> > [mm]\IQ(\zeta)[/mm] entsprechen.
>  
> [ok]
>  
> > Nun habe ich versucht die Fixkörper der Untergruppen zu
> > bestimmen, indem ich ausprobiert habe. Meine Vermutung
> > ist:
>  >  [mm]\IQ(\zeta)^{U_1} = \IQ(\zeta+\zeta^5)[/mm], da [mm]\zeta+\zeta^5[/mm]
> > invariant ist unter [mm]U_1\:[/mm]
>  
> Da [mm]\zeta + \zeta^5[/mm] invariant unter [mm]U_1[/mm] ist folgt [mm]\IQ(\zeta + \zeta^5) \subseteq \IQ(\zeta)^{U_1}[/mm].
> Dass beide Koerper gleich sind musst du noch zeigen.
>  
> (Tipp: hier reicht ein einfaches Gradargument. Kann
> [mm]\IQ(\zeta + \zeta^5) = \IQ[/mm] sein? Und was ist
> [mm][\IQ(\zeta)^{U_1} : \IQ][/mm]?)

[mm] $[\IQ(\zeta)^{U_1} [/mm] : [mm] \IQ]=\frac{4}{2}=2$, [/mm] da $ord [mm] \: U_1 [/mm] = 2$.
[mm] $\IQ(\zeta [/mm] + [mm] \zeta^5)$ [/mm] kann natürlich nicht [mm] $\IQ$ [/mm] sein, da [mm] $\zeta [/mm] + [mm] \zeta^5 \not\in\IQ$. [/mm] Damit folgt dann, da [mm] $\IQ(\zeta [/mm] + [mm] \zeta^5) \subseteq \IQ(\zeta)^{U_1} (\Rightarrow [\IQ(\zeta [/mm] + [mm] \zeta^5):\IQ] \leq [\IQ(\zeta)^{U_1}:\IQ])$, [/mm] dass [mm] $[\IQ(\zeta [/mm] + [mm] \zeta^5):\IQ]=[\IQ(\zeta)^{U_1}:\IQ]=2$ [/mm] und somit [mm] $\IQ(\zeta [/mm] + [mm] \zeta^5)=\IQ(\zeta)^{U_1}$. [/mm]

Ok, dann muss ich gar kein Minimalpolynom von [mm] $\zeta [/mm] + [mm] \zeta^5$ [/mm] finden, daran hab ich mich nämlich abgemüht.

>  
> >  [mm]\IQ(\zeta)^{U_3} = \IQ(\zeta+\zeta^{11})[/mm], da

> > [mm]\zeta+\zeta^{11}[/mm].
>  
> [ok]
>  
> >  Zu [mm]U_2\:[/mm] habe ich gar keine Idee.

>  
> Na, wie waer's denn mit [mm]\IQ(\zeta + \zeta^7)[/mm]?

Das war auch meine erste Idee, aber wenn [mm] $\zeta [/mm] = [mm] e^{\frac{\pi}{6}i}$, [/mm] dann ist doch [mm] $\zeta [/mm] + [mm] \zeta^7 [/mm] = 0$.
Oder steh ich total auf dem Schlauch?

LG Lippel

Bezug
                        
Bezug
Zwischenkp, 12.Kreisteilungskp: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Mo 24.01.2011
Autor: felixf

Moin Lippel!

> > > Nun habe ich versucht die Fixkörper der Untergruppen zu
> > > bestimmen, indem ich ausprobiert habe. Meine Vermutung
> > > ist:
>  >  >  [mm]\IQ(\zeta)^{U_1} = \IQ(\zeta+\zeta^5)[/mm], da
> [mm]\zeta+\zeta^5[/mm]
> > > invariant ist unter [mm]U_1\:[/mm]
>  >  
> > Da [mm]\zeta + \zeta^5[/mm] invariant unter [mm]U_1[/mm] ist folgt [mm]\IQ(\zeta + \zeta^5) \subseteq \IQ(\zeta)^{U_1}[/mm].
> > Dass beide Koerper gleich sind musst du noch zeigen.
>  >  
> > (Tipp: hier reicht ein einfaches Gradargument. Kann
> > [mm]\IQ(\zeta + \zeta^5) = \IQ[/mm] sein? Und was ist
> > [mm][\IQ(\zeta)^{U_1} : \IQ][/mm]?)
>  
> [mm][\IQ(\zeta)^{U_1} : \IQ]=\frac{4}{2}=2[/mm], da [mm]ord \: U_1 = 2[/mm].
>  
> [mm]\IQ(\zeta + \zeta^5)[/mm] kann natürlich nicht [mm]\IQ[/mm] sein, da
> [mm]\zeta + \zeta^5 \not\in\IQ[/mm]. Damit folgt dann, da [mm]\IQ(\zeta + \zeta^5) \subseteq \IQ(\zeta)^{U_1} (\Rightarrow [\IQ(\zeta + \zeta^5):\IQ] \leq [\IQ(\zeta)^{U_1}:\IQ])[/mm],
> dass [mm][\IQ(\zeta + \zeta^5):\IQ]=[\IQ(\zeta)^{U_1}:\IQ]=2[/mm]
> und somit [mm]\IQ(\zeta + \zeta^5)=\IQ(\zeta)^{U_1}[/mm].

[ok]

> Ok, dann muss ich gar kein Minimalpolynom von [mm]\zeta + \zeta^5[/mm]
> finden, daran hab ich mich nämlich abgemüht.

Ja, darauf kannst du verzichten :-)

> > >  [mm]\IQ(\zeta)^{U_3} = \IQ(\zeta+\zeta^{11})[/mm], da

> > > [mm]\zeta+\zeta^{11}[/mm].

Das ist uebrigens ein in [mm] $\IR$ [/mm] enthaltender Zwischenkoerper.

> > [ok]
>  >  
> > >  Zu [mm]U_2\:[/mm] habe ich gar keine Idee.

>  >  
> > Na, wie waer's denn mit [mm]\IQ(\zeta + \zeta^7)[/mm]?
>  
> Das war auch meine erste Idee, aber wenn [mm]\zeta = e^{\frac{\pi}{6}i}[/mm],
> dann ist doch [mm]\zeta + \zeta^7 = 0[/mm].

Oh, stimmt, da hast du recht.

Um hier weiterzukommen, bestimmst du am besten erstmal das Minimalpolynom von [mm] $\zeta$. [/mm] (Wenn du []hier spickst, siehst du, dass es [mm] $X^4 [/mm] - [mm] X^2 [/mm] + 1$ ist.) Damit siehst du, dass [mm] $\zeta^7 [/mm] = [mm] \zeta^5 [/mm] - [mm] \zeta^3 [/mm] = [mm] \zeta^3 [/mm] - [mm] \zeta [/mm] - [mm] \zeta^3 [/mm] = [mm] -\zeta$ [/mm] ist. (Das hast du ja auch schon herausgefunden oben ;-) )

Ist also [mm] $\sigma$ [/mm] der Automorphismus mit [mm] $\sigma(\zeta) [/mm] = [mm] \zeta^7$, [/mm] so ist [mm] $\sigma(1) [/mm] = 1$, [mm] $\sigma(\zeta) [/mm] = [mm] -\zeta$, $\sigma(\zeta^2) [/mm] = [mm] \zeta^2$ [/mm] und [mm] $\sigma(\zeta^3) [/mm] = [mm] -\zeta^3$. [/mm]

Ein allgemeines Element $x = a + b [mm] \zeta [/mm] + c [mm] \zeta^2 [/mm] + d [mm] \zeta^3 \in \IQ(\zeta)$ [/mm] wird also durch [mm] $\sigma$ [/mm] auf $a - b [mm] \zeta [/mm] + c [mm] \zeta^2 [/mm] - d [mm] \zeta^3$ [/mm] abgebildet. Du siehst also: der Fixkoerper von [mm] $\langle \sigma \rangle$ [/mm] ist [mm] $\{ a + c \zeta^2 \mid a, c \in \IQ \} [/mm] = [mm] \IQ(\zeta^2)$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]