www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Zusammenfassung zu Logarithmus
Zusammenfassung zu Logarithmus < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenfassung zu Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 01.01.2010
Autor: Zirbe

Aufgabe
Fassen Sie zu einem Logarithmus zusammen.
Aufgabe:
[mm] log_{8}(\wurzel{3}) [/mm] - [mm] log_{8}(\wurzel{6}) [/mm] - [mm] log_{8}(\wurzel{8}) [/mm]

Hallo,
ich weiß, wie ich die Aufgabe bearbeite bis zum vorletzten Schritt, den kann ich leider nicht nachvollziehen und hoffe, dass mir jemand dabei behilflich sein kann. Danke schon Mal im Voraus!

Vorgehensweise:
[mm] 0,5(log_{8}(3) [/mm] - [mm] log_{8}(6) [/mm] - [mm] log_{8}(8)) [/mm]
[mm] 0,5(log_{8}(\bruch{1}{16})) [/mm]
0,5 [mm] log_{8} 8^{-\bruch{4}{3}} [/mm]

Also wie man auf die [mm] -\bruch{4}{3} [/mm] kommt, ist mir schon klar. Aber wo kommt diese zweite 8 her?

Lg

        
Bezug
Zusammenfassung zu Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Fr 01.01.2010
Autor: zahllos

Hallo,

du mußt [mm] \frac{1}{16} [/mm] als Potenz von 8 schreiben.
es gilt: [mm] 8^4 [/mm] = [mm] 16^3 [/mm]
also: [mm] \frac{1}{16} [/mm] = [mm] 8^\frac{-3}{4} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]