www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zufallsvariable
Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Sa 13.12.2008
Autor: Murx

Aufgabe
Das Intervall [0,1] werde durch eine auf (0,1) gleichverteilte Zufallsvariable in zwei Teile geteilt. K sei die Länge des kürzeren und L die Länge des längeren Teilintervalls. Man berechne

a) E[K], E[L]  
b) Var[K], Var[L]
c) Cov[K,L]  

Hallo,

kann mir vielleicht jemand sagen, wie man an so eine Aufgabe rangehen soll??
Ich finde keinen Ansatz. Ich hab doch fast nix gegeben.

Für ein paar Tipps wär ich echt dankbar.

        
Bezug
Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Sa 13.12.2008
Autor: luis52

Moin Murx,

nur so ein paar Gedanken ...

Sei U gleichverteilt in (0,1).  Dann ist [mm] $K=\min\{U,1-U\}$ [/mm] und
[mm] $L=\max\{U,1-U\}$.[/mm]  []Hier finde ich [mm] $\min\{x,y\}=(x+y-|x-y|)/2$ [/mm] und [mm] $\max\{x,y\}=(x+y+|x-y|)/2$ [/mm] fuer zwei Zahlen [mm] $x,y\in\IR$. [/mm]

Angewandt auf oben ist $K=1/2-|U-1/2|$ und $L=1/2+|U-1/2|$. Hiermit
sollte es einfach sein, a) und b) zu loesen.

Fuer c) brauchst du [mm] $\operatorname{E}[KL]$. [/mm] Es ist aber [mm] $KL=1/4-(U-1/2)^2$ [/mm] ...

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]