www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zufallsvar. und Dichten
Zufallsvar. und Dichten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvar. und Dichten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 05.12.2005
Autor: Crispy

Hallo,
anbei habe ich eine Aufgabe zu Zufallsvariablen und Dichte.

Sei [mm]\xi[/mm] eine Zufallsvariable mit Dichte f und
[mm]\eta:=a \xi + b[/mm] (mit [mm]a, b \in \IR, a \not= 0)[/mm]
Zeige, dass [mm]\eta[/mm] ebenfalls eine Dichte besitzt und bestimme diese.
Leite die Dichte für [mm]\eta[/mm] her, falls:
1. [mm]\xi[/mm] auf dem Intervall [0,1] gleichverteilt ist
2. [mm]\xi[/mm] standardnormalverteilt ist mit [mm]f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^2/2 \right)[/mm]

Zündene Idee hab ich zunächst keine. Vermutlich muss man zunächst eine Umkehrfunktion bestimmen.
[mm]\eta:= a \xi + b \Rightarrow \xi= \frac{\eta-b}{a}[/mm] Dieses Ding nenne ich dann [mm]\varphi(\eta) = \frac{\eta-b}{a}[/mm]

Daraus kann ich dann ein [mm]h(\eta)[/mm] bauen, mit:
[mm]h(\eta)=\frac{f \left(\varphi^{-1}(\eta) \right)}{\varphi' \left(\varphi^{-1}(\eta) \right)}[/mm]
Dieses [mm]h(\eta)[/mm] wäre dann die Dichte, oder?

Wäre nett, wenn mir das jemand bestätigen oder sagen könnte, was ich falsch gemacht hab.

Viele Grüsse,
Crispy


        
Bezug
Zufallsvar. und Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Di 06.12.2005
Autor: Julius

Hallo Crispy!

Mittels direkter Rechnung

[mm] $P(\eta \le [/mm] y)$

[mm] $=P(a\zeta [/mm] + b [mm] \le [/mm] y)$

$=P [mm] \left(\zeta \le \frac{y-b}{a} \right)$ [/mm]

$= [mm] \int\limits_{-\infty}^{\frac{y-b}{a}} f(x)\, [/mm] dx$

$= [mm] \int\limits_{- \infty}^y [/mm] f [mm] \left( \frac{x-b}{a} \right) \cdot \frac{1}{a}\, [/mm] dx$

kann man die Dichte von [mm] $\eta$ [/mm] unmittelbar ablesen:

$g(x) = [mm] \frac{1}{a} \cdot [/mm] f [mm] \left( \frac{x-b}{a} \right)$. [/mm]

Liebe Grüße
Julius

Bezug
                
Bezug
Zufallsvar. und Dichten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:15 Di 06.12.2005
Autor: Crispy

Hallo Julius,

vielen Dank für deine einfache und unkomplizierte Lösung. Irgendwie habe ich noch diese Formel von oben im Kopf.

Dazu eine weitere kleine Frage:
Zufallsvariable U auf [0,1] gleichverteilt.
Zeige, dass die Zufallsvariable [mm]\xi =- \frac{\ln(U)}{a}[/mm] die Dichte [mm]f[/mm] hat mit [mm]f(x)=a \cdot \exp(-ax)[/mm] für [mm]x \ge 0[/mm] und sonst [mm]f(x)=0[/mm].
Da hab ich erst umgestellt [mm]U=\exp(-a\xi)[/mm] und dann diese Formel aus meinem ersten Beitrag verwendet.
[mm]f(x)=\frac{g(\varphi^{-1}(x))}{\varphi'(\varphi^{-1}(x))}[/mm]
(g bezeichne hier die Dichte von U.)
Lieg ich da auch wieder falsch, oder passt das diesmal.

Vielen Dank,
Crispy

Bezug
                        
Bezug
Zufallsvar. und Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Di 06.12.2005
Autor: Julius

Hallo Crispy!

Ja, das sollte mit der Formel auch gehen, aber ich zeige es lieber wieder direkt (dann sieht man wenigstens, was passiert ;-)):

Für $x [mm] \ge [/mm] 0$ gilt:

[mm] $P(\zeta \le [/mm] x)$

$= P [mm] \left( - \frac{\ln(U)}{a} \le x \right)$ [/mm]

$= [mm] P(\ln(U) \ge [/mm] -ax)$

$=P(U [mm] \ge e^{-ax})$ [/mm]

$=1 - [mm] e^{-ax}$ [/mm]

und daher:

$f(x) = [mm] \frac{d}{dx} P(\zeta \le [/mm] x) = [mm] ae^{-ax}$, [/mm]

was zu zeigen war.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]