www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Zinseszinsrechng stetige Verzi
Zinseszinsrechng stetige Verzi < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zinseszinsrechng stetige Verzi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:03 So 21.04.2019
Autor: hase-hh

Aufgabe
Der jährliche Zinssatz, mit dem ein Anfangskapital [mm] K_0 [/mm] bei jährlicher Zinszahlung verzinst wird, beträgt 10%, so dass man mit Zinseszinsen nach t Jahren das Kapital [mm] K_t [/mm] erhält.

Bei welchem jährlichen Zinssatz (in Prozent) würde man bei stetiger Verzinsung beim selben Anfangskapital [mm] K_0 [/mm] nach t Jahren dasselbe Endkapital [mm] K_t [/mm] erhalten?

Moin Moin,

über den reinen Lösungsweg hinaus, wäre ich für ein paar Anmerkungen zur einfachsten Vorgehensweise dankbar.


Zunächst würde ich eine geometrische Reihe erkennen... und die Formel [mm] K_t [/mm] = [mm] K_0*q^t [/mm]  ist mir auch bekannt.

und q ist hier mit 10%, d.h. q=0,1, vorgegeben.

bzw.

[mm] s_n [/mm] = [mm] a_0*\bruch{q^{n+1}-1}{q-1} [/mm]

[mm] K_t [/mm] = [mm] K_0*\bruch{0,1^{t+1}-1}{0,1-1} [/mm]


richtig?


Die Formel für die stetige Verzinsung lautet...

Anmerkungen

Die stetige Verzinsung  [mm] K_t [/mm] = [mm] \limes_{m\rightarrow\infty} [K_0+(1+\bruch{i}{m})^{m*n}] [/mm]  

bzw.  [mm] K_t [/mm] = [mm] K_0*e^{t*i} [/mm]

richtig?


Ich würde nun die Terme gleichsetzen...

[mm] K_t [/mm] = [mm] K_t [/mm]

[mm] K_0*\bruch{0,1^{t+1}-1}{0,1-1} [/mm] = [mm] K_0*e^{t*i} [/mm]


[mm] \bruch{0,1^{t+1}-1}{0,1-1} [/mm] = [mm] e^{t*i} [/mm]     | ln

Da ich i bestimmen möchte, müsste ich jetzt logarithmieren, richtig? oder gibt es vielleicht einen einfacheren Weg?


ln [mm] (\bruch{0,1^{t+1}-1}{0,1-1}) [/mm] = t*i


i = [mm] \bruch{ln(\bruch{0,1^{t+1}-1}{0,1-1})}{t} [/mm]


Leider komme ich hier auf keinen konkreten Wert, oder???


Danke für eure Hilfe!


        
Bezug
Zinseszinsrechng stetige Verzi: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 So 21.04.2019
Autor: Gonozal_IX

Hiho,

du würfelst Formeln durcheinander:

> Zunächst würde ich eine geometrische Reihe erkennen...

Wo auch immer du die erkennen willst... Du brauchst sie hier nicht.

> und die Formel [mm]K_t[/mm] = [mm]K_0*q^t[/mm]  ist mir auch bekannt.

Das ist schön, hat aber leider nichts mit Zinsrechnung zu tun sondern höchstens mit Abschreibungen.

> und q ist hier mit 10%, d.h. q=0,1, vorgegeben.

Wenn q das sein soll so lautet die korrekte Formel:  [mm]K_t=K_0*(1+q)^t[/mm]  andernfalls würde dein Kapital ja kleiner werden mit der Zeit.... doofe Geldanlage.

> [mm]s_n[/mm] = [mm]a_0*\bruch{q^{n+1}-1}{q-1}[/mm]
>  
> [mm]K_t[/mm] = [mm]K_0*\bruch{0,1^{t+1}-1}{0,1-1}[/mm]

Was immer das sein soll: wir nennen es mal sinnlos und ignorieren das im weiteren Verlauf.

> Die Formel für die stetige Verzinsung lautet...
>  
>  [mm]K_t[/mm] = [mm]K_0*e^{t*i}[/mm]

[ok]

> Ich würde nun die Terme gleichsetzen...

[ok]

Und nun rechne noch mal, mit den beiden richtigen Formeln diesmal.
Erinnere dich an die Logarithmus-Gesetze und verwende [mm] $\ln(1,1) \approx [/mm] 0,953$

Gruß,
Gono


Bezug
                
Bezug
Zinseszinsrechng stetige Verzi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:10 So 21.04.2019
Autor: hase-hh


> Hiho,
>  
> du würfelst Formeln durcheinander:

Das stimmt, upps.  Mit [mm] K_n [/mm] = [mm] K_0*q^n [/mm]  war gemeint, dass q = 1 + p ist... was aber für die Folgenbetrachtung zu Verwirrungen führt...

> > Zunächst würde ich eine geometrische Reihe erkennen...
> Wo auch immer du die erkennen willst... Du brauchst sie
> hier nicht.
>
> > und die Formel [mm]K_t[/mm] = [mm]K_0*q^t[/mm]  ist mir auch bekannt.
> Das ist schön, hat aber leider nichts mit Zinsrechnung zu
> tun sondern höchstens mit Abschreibungen.

Stimmt nicht, wenn q=1+p gilt, s.o. Dennoch wähle ich im folgenden deinen Ansatz bzw. für q die Zahl, die ich sonst p nennen würde...

>  
> > und q ist hier mit 10%, d.h. q=0,1, vorgegeben.
>  Wenn q das sein soll so lautet die korrekte Formel:  
> [mm]K_t=K_0*(1+q)^t[/mm]  andernfalls würde dein Kapital ja kleiner
> werden mit der Zeit.... doofe Geldanlage.

> $ [mm] s_n [/mm] $ = $ [mm] a_0\cdot{}\bruch{q^{n+1}-1}{q-1} [/mm] $
>  
> $ [mm] K_t [/mm] $ = $ [mm] K_0\cdot{}\bruch{0,1^{t+1}-1}{0,1-1} [/mm] $

> Was immer das sein soll: wir nennen es mal sinnlos und ignorieren das im weiteren Verlauf.

Naja, die Idee war, die Summe dieser geometrischen Folge zu formulieren... OK, ignorieren wir...

***


Also, fangen wir an...

[mm] K_t [/mm] = [mm] K_o*(1+q)^t [/mm]

> > Die Formel für die stetige Verzinsung lautet...

  

> >  [mm]K_t[/mm] = [mm]K_0*e^{t*i}[/mm]

  
[mm] K_t [/mm] = [mm] K_t [/mm]
[mm] K_0*(1+q)^t [/mm] = [mm] K_0*e^{t*i} [/mm]   | : [mm] K_0 [/mm]

[mm] (1+q)^t [/mm] = [mm] e^{t*i} [/mm]   | ln

[mm] ln(1,1^t) [/mm] =  [mm] ln(e^{t*i}) [/mm]

t*ln(1,1) = t*i

i = ln(1,1) [mm] \approx [/mm]  0,0953

i [mm] \approx [/mm]  9,53 %


richtig?






Bezug
                        
Bezug
Zinseszinsrechng stetige Verzi: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 So 21.04.2019
Autor: Gonozal_IX

Hiho,

> Stimmt nicht, wenn q=1+p gilt, s.o. Dennoch wähle ich im
> folgenden deinen Ansatz bzw. für q die Zahl, die ich sonst
> p nennen würde...

ich eigentlich auch, hab mich da nur deiner Schreibweise angepasst ;-)

> i [mm]\approx[/mm]  9,53 %
> richtig?

[ok]

Gruss,
Gono

Bezug
                        
Bezug
Zinseszinsrechng stetige Verzi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Mo 22.04.2019
Autor: hase-hh

Anmerkung

Eben bin ich drauf gekommen, dass ich nicht q sondern p=10% gegeben habe!! Das macht die Sache für mich deutlich runder. ^^

Es gilt für die Zinseszinsrechnung

[mm] K_n [/mm] = [mm]K_0*q^n[/mm]  mit  q = 1+p

bzw.

[mm]K_t[/mm] = [mm]K_0*q^t[/mm]

[mm]K_t[/mm] = [mm]K_0*(1+0,1)^t[/mm]

[mm] K_t [/mm]  = [mm] K_0*1,1^t [/mm]

Es gilt für die stetige Verzinsung

[mm]K_t[/mm] = [mm]K_0*e^{t*i}[/mm]
  

Ansatz

[mm]K_t[/mm] = [mm]K_t[/mm]
[mm]K_0*1,1^t[/mm] = [mm]K_0*e^{t*i}[/mm]   | : [mm]K_0[/mm]

[mm](1,1)^t[/mm] = [mm]e^{t*i}[/mm]   | ln
  
[mm]ln(1,1^t)[/mm] =  [mm]ln(e^{t*i})[/mm]
  
t*ln(1,1) = t*i

i = ln(1,1) [mm]\approx[/mm]  0,0953

i [mm]\approx[/mm]  9,53 %




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]